b. The costs of manufacturing x_1 dollars worth of B are given by the vector x_1 b, and the costs of manufacturing x_2 dollars worth of C are given by x_2 c. Hence the total costs for both products are given by the vector x_1 b + x_2 c.

PRACTICE PROBLEMS

- 1. Prove that $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any \mathbf{u} and \mathbf{v} in \mathbb{R}^n .
- 2. For what value(s) of h will y be in Span{ v_1, v_2, v_3 } if

v ₁ =	$\begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}$,	$\mathbf{v}_2 = \left[\begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \end{array} \right]$	5 4 7],	$\mathbf{v}_3 = \begin{bmatrix} -3\\1\\0\end{bmatrix}$,	and	y =	$\begin{bmatrix} -4\\ 3\\ h \end{bmatrix}$	

1.3 Exercises

In Exercises 1 and 2, compute u + v and u - 2v.

1.
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$ **2.** $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

In Exercises 3 and 4, display the following vectors using arrows on an xy-graph: u, v, -v, -2v, u + v, u - v, and u - 2v. Notice that u - v is the vertex of a parallelogram whose other vertices are u, 0, and -v.

3. u and v as in Exercise 1 . 4. u and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent to the given vector equation.

5.
$$x_1 \begin{bmatrix} 6 \\ -1 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -7 \\ -5 \end{bmatrix}$$

6. $x_1 \begin{bmatrix} -2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 8 \\ 5 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \mathbb{R}^2 a linear combination of u and v?

7. Vectors a, b, c, and d

8. Vectors w, x, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

Э.	$x_2 + 5x_3 = 0$	10. $4x_1 + x_2 + 3x_3 = 9$
	$4x_1 + 6x_2 - x_3 = 0$	$x_1 - 7x_2 - 2x_3 = 2$
	$-x_1 + 3x_2 - 8x_3 = 0$	$8x_1 + 6x_2 - 5x_3 = 15$

In Exercises 11 and 12, determine if b is a linear combination of a_1 , a_2 , and a_3 .

38 CHAPTER 1 Linear Equations in Linear Algebra

11.
$$\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\mathbf{a}_{2} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{a}_{3} = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$
12. $\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$, $\mathbf{a}_{2} = \begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}$, $\mathbf{a}_{3} = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}$

In Exercises 13 and 14, determine if b is a linear combination of the vectors formed from the columns of the matrix A.

13.
$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$
14. $A = \begin{bmatrix} 1 & -2 & -6 \\ 0 & 3 & 7 \\ 1 & -2 & 5 \end{bmatrix}$, $b = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$

In Exercises 15 and 16, list five vectors in Span $\{v_1, v_2\}$. For each vector, show the weights on v_1 and v_2 used to generate the vector and list the three entries of the vector. Do not make a sketch.

15.
$$\mathbf{v}_1 = \begin{bmatrix} 7\\1\\-6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -5\\3\\0 \end{bmatrix}$
16. $\mathbf{v}_1 = \begin{bmatrix} 3\\0\\2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2\\0\\3 \end{bmatrix}$
17. Let $\mathbf{a}_1 = \begin{bmatrix} 1\\4\\-2 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} -2\\-3\\7 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4\\1\\h \end{bmatrix}$. For what

value(s) of h is b in the plane spanned by a_1 and a_2 ?

18. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3\\1\\8 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h\\-5\\-3 \end{bmatrix}$. For what

value(s) of h is y in the plane generated by v_1 and v_2 ?

19. Give a geometric description of Span $\{v_1, v_2\}$ for the vectors

$$\mathbf{v}_1 = \begin{bmatrix} \mathbf{\delta} \\ 2 \\ -\mathbf{\delta} \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 12 \\ 3 \\ -9 \end{bmatrix}$

- 20. Give a geometric description of Span $\{v_1, v_2\}$ for the vectors in Exercise 16.
- 21. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Show that $\begin{bmatrix} h \\ k \end{bmatrix}$ is in Span $\{\mathbf{u}, \mathbf{v}\}$ for all h and k.
- 22. Construct a 3×3 matrix A, with nonzero entries, and a vector b in \mathbb{R}^3 such that b is *not* in the set spanned by the columns of A.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- 23. a. Another notation for the vector $\begin{bmatrix} -4\\3 \end{bmatrix}$ is $\begin{bmatrix} -4&3 \end{bmatrix}$.
 - b. The points in the plane corresponding to $\begin{bmatrix} -2\\5 \end{bmatrix}$ and $\begin{bmatrix} -5\\2 \end{bmatrix}$ lie on a line through the origin.
 - c. An example of a linear combination of vectors v_1 and v_2 is the vector $\frac{1}{2}v_1$.
 - d. The solution set of the linear system whose augmented matrix is $[a_1 \ a_2 \ a_3 \ b]$ is the same as the solution set of the equation $x_1a_1 + x_2a_2 + x_3a_3 = b$.
 - e. The set Span $\{u, v\}$ is always visualized as a plane through the origin.
- 24. a. Any list of five real numbers is a vector in \mathbb{R}^5 .
 - b. The vector \mathbf{u} results when a vector $\mathbf{u} \mathbf{v}$ is added to the vector \mathbf{v} .
 - c. The weights c_1, \ldots, c_p in a linear combination $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ cannot all be zero.
 - d. When u and v are nonzero vectors, Span {u, v} contains the line through u and the origin.
 - e. Asking whether the linear system corresponding to an augmented matrix [a₁ a₂ a₃ b] has a solution amounts to asking whether b is in Span {a₁, a₂, a₃}.

25. Let
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$$
 and $b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$. Denote the

columns of A by \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , and let $W = \text{Span} \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

- a. 1s b in $\{a_1, a_2, a_3\}$? How many vectors are in $\{a_1, a_2, a_3\}$?
- b. 1s b in W? How many vectors are in W?
- c. Show that a₁ is in W. [Hint: Row operations are unnecessary.]

26. Let
$$A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$$
, let $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 3 \end{bmatrix}$, and let W be the

set of all linear combinations of the columns of A.

- a. Is b in W?
- b. Show that the third column of A is in W.
- 27. A mining company has two mines. One day's operation at mine #1 produces ore that contains 20 metric tons of copper