b. The costs of manufacturing x_{1} dollars worth of B are given by the vector $x_{1} \mathbf{b}$, and the costs of manufacturing x_{2} dollars worth of C are given by $x_{2} \mathrm{c}$. Hence the total costs for both products are given by the vector $x_{1} \mathbf{b}+x_{2} \mathbf{c}$.

Practice Problems

1. Prove that $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for any \mathbf{u} and v in \mathbb{R}^{n}.
2. For what value(s) of h will y be in $\operatorname{Span}\left\{\mathbf{v}_{1}, v_{2}, v_{3}\right\}$ if

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{r}
-4 \\
3 \\
h
\end{array}\right]
$$

1.3 EXERCISES

In Exercises 1 and 2, compute $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-2 \mathbf{v}$.

1. $\mathbf{u}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-3 \\ -1\end{array}\right]$
2. $\mathbf{u}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \mathrm{v}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$

In Exercises 3 and 4, display the following vectors using arrows on an $x y$-graph: $\mathbf{u}, \mathbf{v},-\mathbf{v},-2 \mathbf{v}, \mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}$, and $\mathbf{u}-2 \mathbf{v}$. Notice that $\mathbf{u}-\mathbf{v}$ is the vertex of a parallelogram whose other vertices are $\mathbf{4}, 0$, and $-\mathbf{v}$.
3. \mathbf{u} and y as in Exercise 1
4. \mathbf{u} and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent to the given vector equation.
$5 . x_{1}\left[\begin{array}{r}6 \\ -1 \\ 5\end{array}\right]+x_{2}\left[\begin{array}{r}-3 \\ 4 \\ 0\end{array}\right]=\left[\begin{array}{r}1 \\ -7 \\ -5\end{array}\right]$
6. $x_{2}\left[\begin{array}{r}-2 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{l}8 \\ 5\end{array}\right]+x_{3}\left[\begin{array}{r}1 \\ -6\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \mathbb{R}^{2} a linear combination of u and v ?

7. Vectors a, b, c, and d

8. Vectors w, x, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

$$
\text { 9. } \begin{array}{rlr}
x_{2}+5 x_{3}=0 & \text { 10. } 4 x_{1}+x_{2}+3 x_{3}=9 \\
4 x_{1}+6 x_{2}-x_{3}=0 & x_{1}-7 x_{2}-2 x_{3}=2 \\
-x_{1}+3 x_{2}-8 x_{3} & =0 & 8 x_{1}+6 x_{2}-5 x_{3}=15
\end{array}
$$

In Exercises 11 and 12 , determine if \mathbf{b} is a linear combination of a_{1}, a_{2}, and a_{3}.
11. $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right], a_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], a_{3}=\left[\begin{array}{r}5 \\ -6 \\ 8\end{array}\right], b=\left[\begin{array}{r}2 \\ -1 \\ 6\end{array}\right]$
12. $a_{1}=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right], a_{2}=\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right], a_{3}=\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right], b=\left[\begin{array}{r}-5 \\ 11 \\ -7\end{array}\right]$

In Exercises 13 and 14, determine if b is a linear combination of the vectors formed from the columns of the matrix A.
13. $A=\left[\begin{array}{rrr}1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4\end{array}\right], b=\left[\begin{array}{r}3 \\ -7 \\ -3\end{array}\right]$
14. $A=\left[\begin{array}{rrr}1 & -2 & -6 \\ 0 & 3 & 7 \\ 1 & -2 & 5\end{array}\right], b=\left[\begin{array}{r}11 \\ -5 \\ 9\end{array}\right]$

In Exercises 15 and 16 , list five vectors in Span $\left\{\mathbf{v}_{1}, \mathrm{v}_{2}\right\}$. For each vector, show the weights on v_{1} and v_{2} used to generate the vector and list the three entries of the vector. Do not make a sketch.
15. $\mathrm{v}_{\mathrm{I}}=\left[\begin{array}{r}7 \\ 1 \\ -6\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{r}-5 \\ 3 \\ 0\end{array}\right]$
16. $\mathrm{v}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{r}-2 \\ 0 \\ 3\end{array}\right]$
17. Let $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ 4 \\ -2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}-2 \\ -3 \\ 7\end{array}\right]$, and $\mathrm{b}=\left[\begin{array}{l}4 \\ 1 \\ h\end{array}\right]$. For what value(s) of h is b in the plane spanned by a_{1} and a_{2} ?
18. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 1 \\ 8\end{array}\right]$, and $\mathrm{y}=\left[\begin{array}{r}h \\ -5 \\ -3\end{array}\right]$. For what value(s) of h is y in the plạne generated by v_{1} and v_{2} ?
19. Give a geometric description of Span $\left\{v_{1}, v_{2}\right\}$ for the vectors $\mathbf{v}_{1}=\left[\begin{array}{r}8 \\ 2 \\ -6\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}12 \\ 3 \\ -9\end{array}\right]$.
20. Give a geometric description of $\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ for the vectors in Exercise 16.
21. Let $\mathbf{u}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ and $v=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Show that $\left[\begin{array}{l}h \\ k\end{array}\right]$ is in Span $\{\mathbf{u}, \mathbf{v}\}$ for all h and k.
22. Construct a 3×3 matrix A, with nonzero entries, and a vector b in \mathbb{R}^{3} such that b is not in the set spanned by the columns of A.

In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. Another notation for the vector $\left[\begin{array}{r}-4 \\ 3\end{array}\right]$ is $\left[\begin{array}{ll}-4 & 3\end{array}\right]$.
b. The points in the plane corresponding to $\left[\begin{array}{r}-2 \\ 5\end{array}\right]$ and $\left[\begin{array}{r}-5 \\ 2\end{array}\right]$ lie on a line through the origin.
c. An example of a linear combination of vectors \mathbf{v}_{1} and \mathbf{v}_{2} is the vector $\frac{1}{2} \mathbf{v}_{1}$.
d. The solution set of the linear system whose augmented matrix is $\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & b\end{array}\right]$ is the same as the solution set of the equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}$.
e. The set $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.
24. a. Any list of five real numbers is a vector in \mathbb{R}^{5}.
b. The vector u results when a vector $n-v$ is added to the vector v .
c. The weights c_{1}, \ldots, c_{p} in a finear combination $c_{1} \mathrm{v}_{1}+\cdots+c_{p} \mathrm{v}_{p}$ cannot all be zero.
d. When \mathbf{u} and v are nonzero vectors, $\operatorname{Span}\{\mathbf{u}, \mathrm{v}\}$ contains the line through u and the origin.
e. Asking whether the linear system corresponding to an augmented matrix [$\left.\begin{array}{llll}a_{1} & a_{2} & a_{3} & b\end{array}\right]$ has a solution amounts to asking whether b is in $\operatorname{Span}\left\{a_{1}, a_{2}, a_{3}\right\}$.
25. Let $A=\left[\begin{array}{rrr}1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3\end{array}\right]$ and $b=\left[\begin{array}{r}4 \\ 1 \\ -4\end{array}\right]$. Denote the . columns of A by $\mathbf{a}_{1}, \mathbf{a}_{2}, a_{3}$, and let $W=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.
a. 1s b in $\left\{a_{1}, a_{2}, a_{3}\right\}$? How many vectors are in $\left\{a_{1}, a_{2}, a_{3}\right\}$?
b. 1s b in W ? How many vectors are in W ?
c. Show that \mathbf{a}_{1} is in W. [Hint: Row operations are unnecessary.]
26. Let $A=\left[\begin{array}{rrr}2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1\end{array}\right]$, let $\mathbf{b}=\left[\begin{array}{r}10 \\ 3 \\ 3\end{array}\right]$, and let W be the set of all linear combinations of the columns of A.
a. Is b in W ?
b. Show that the third column of A is in W.
27. A mining company has two mines. One day's operation at mine \#1 produces ore that contains 20 metric tons of copper

