Solution to Linear Algebra (Math 2890) Review Problems II

1. (a) What is a subspace in R^{n} ?

Solution: A subspace of R^{n} is any set H in R^{n} that satisfies the following three properties. (I) The zero vector is in H. (II) For each u and v in H, then $u+v$ is in H. (III) For each u in H and each scalar c, the vector $c u$ is in H.
(b) Is the set $\{(x, y, z) \mid x+y+z=1\}$ a subspace?

Solution: This is not a subspace since the zero vector $(0,0,0)$ is not in the set.
(c) Is the set $\{(x, y, z) \mid x-y-z=0, x+y-z=0\}$ a subspace?

Solution: Yes. This is a subspace. This can be regarded as the nullspace of the matrix $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1\end{array}\right]$.
Here $\operatorname{Nul}(A)=\left\{(x, y, z) \left\lvert\,\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0\right.\right\}$.
(d) What is a basis for a subspace?

Solution: A basis for a subspace H of R^{n} is a linearly independent set in H that spans H.
(e) What is the dimension of a subspace?

Solution:The dimension of a nonzero subspace H is the number of vectors in any basis for H.
(f) What is the column space of a matrix?

Solution: The column space of a matrix A is the set of the span of the column vectors of A.
(g) What is the null space of a matrix?

Solution:The null space of a matrix A is the set of all solutions to the homogeneous equation $A x=0$, i.e. $\operatorname{Nul}(A)=\{x \mid A x=0\}$.
(h) What is the subspace spanned by the vectors $v_{1}, v_{2}, \cdots, v_{p}$? Solution: The subspace spanned by $v_{1}, v_{2}, \cdots, v_{p}$ is the set of all possible linear combination of $v_{1}, v_{2}, \cdots, v_{p}$, i.e. $\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}=$ $\left\{c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p} \mid c_{1}, c_{2}, \cdots, c_{p}\right.$ are real numbers $\}$
2. Find the inverses of the following matrices if they exist.

$$
A=\left[\begin{array}{cc}
7 & -2 \\
-4 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 3 & 1 \\
-1 & 0 & -1
\end{array}\right], C=\left[\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right]
$$

Solution: (a) Since $\operatorname{det}(A)=-1$, we have $A^{-1}=\frac{1}{-1}\left[\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}\right]=\left[\begin{array}{ll}-1 & -2 \\ -4 & -7\end{array}\right]$ (b)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
2 & 3 & 1 & 0 & 1 & 0 \\
-1 & 0 & -1 & 0 & 0 & 1
\end{array}\right] r_{2}: \widetilde{=r_{2}-2 r_{1}}\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 5 & -1 & -2 & 1 & 0 \\
-1 & 0 & -1 & 0 & 0 & 1
\end{array}\right]} \\
& r_{3}: \widetilde{=r_{3}}+r_{1}\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 5 & -1 & -2 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 & 1
\end{array}\right] \\
& r_{2}:=\widetilde{-r_{3}, r_{3}}:=r_{2}\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & -1 \\
0 & 5 & -1 & -2 & 1 & 0
\end{array}\right] \\
& r_{3}: \widetilde{=r_{3}-5 r_{2}}\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & -1 & 3 & 1 & 5
\end{array}\right] \\
& r_{1}:=r_{1} \widetilde{+r_{3}, r_{3}}:=-r_{3}\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 4 & 1 & 5 \\
0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 1 & -3 & -1 & -5
\end{array}\right] \\
& r_{1}: \widetilde{=r_{1}+r_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & 1 & 4 \\
0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 1 & -3 & -1 & -5
\end{array}\right] \\
& \text { So } B^{-1}=\left[\begin{array}{ccc}
3 & 1 & 4 \\
-1 & 0 & -1 \\
-3 & -1 & -5
\end{array}\right] \text {. } \\
& \text { (c) }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
2 & 3 & 4 & 1 & 0 & 0 \\
5 & 6 & 7 & 0 & 1 & 0 \\
8 & 9 & 10 & 0 & 0 & 1
\end{array}\right] r_{2}: \widetilde{=r_{2}-2 r_{1}}\left[\begin{array}{ccc|ccc}
2 & 3 & 4 & 1 & 0 & 0 \\
1 & 0 & -1 & -2 & 1 & 0 \\
8 & 9 & 10 & 0 & 0 & 1
\end{array}\right]} \\
& r_{2} \rightleftarrows r_{1}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -2 & 1 & 0 \\
2 & 3 & 4 & 1 & 0 & 0 \\
8 & 9 & 10 & 0 & 0 & 1
\end{array}\right] \\
& r_{2}:=r_{2}-\widetilde{2 r_{1}, r_{3}}:=r_{3}-8 r_{1}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -2 & 1 & 0 \\
0 & 3 & 6 & 3 & -1 & 0 \\
0 & 9 & 18 & 16 & -8 & 1
\end{array}\right] \\
& r_{3}: \widetilde{\left.\left.r_{3}+(-3) r_{2}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -2 & 1 & 0 \\
0 & 3 & 6 & 3 & -1 & 0 \\
0 & 0 & 0 & 7 & -5 & 1
\end{array}\right] .\right] . \begin{array}{cccc}
0
\end{array}\right]}
\end{aligned}
$$

So C only has one free variable (or two pivot vectors) and C is not invertible.
3. (a) Let A be an 3×3 matrix. Suppose $A^{3}+2 A^{2}-3 A+4 I=0$. Is A invertible? Express A^{-1} in terms of A if possible.
Solution: From $A^{3}+2 A^{2}-3 A+4 I=0$, we have $A^{3}+2 A^{2}-3 A=-4 I$, $A\left(A^{2}+2 A-3 I\right)=-4 I$ and $A \cdot\left(-\frac{1}{4}\left(A^{2}+2 A-3 I\right)\right)=I$. So $A^{-1}=$ $-\frac{1}{4}\left(A^{2}+2 A-3 I\right)$.
(b) Suppose $A^{3}=0$. Is A invertible?

Solution: If A is invertible then $A^{-2} A^{3}=A^{-2} 0$ and $A=0$ which is not invertible. So A is not invertible.
4. Find all values of a and b so that the subspace of \mathbb{R}^{4} spanned by $\left\{\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}b \\ 1 \\ -a \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 0\end{array}\right]\right\}$ is two-dimensional.
Solution: Consider the matrix $A=\left[\begin{array}{ccc}0 & b & -2 \\ 1 & 1 & 2 \\ 0 & -a & 0 \\ -1 & 1 & 0\end{array}\right]$
interchange first row and second row $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ -1 & 1 & 0\end{array}\right]$
$r_{4}: \widetilde{=r_{1}+}+r_{4}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ 0 & 2 & 2\end{array}\right]$
interchange second row and forth row $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -a & 0 \\ 0 & b & -2\end{array}\right]$
divide second row by $2\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -a & 0 \\ 0 & b & -2\end{array}\right] r_{3}:=r_{3}+\widetilde{a r_{2}, r_{4}}:=r_{4}-b r_{2}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & a \\ 0 & 0 & -2-b\end{array}\right]$.
Now the first and second vectors are pivot vectors. So $\operatorname{rank}(A)=2$ if $a=0$ and $-2-b=0$.
So $a=0$ and $b=-2$
5. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$. You can assume that \mathcal{B} is a basis for R^{3}
(a) Which vector x has the coordinate vector $[x]_{B}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.

Let $A=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$. So $x=A[x]_{B}=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{l}1-3+0 \\ 0-2+0 \\ 0-1+4\end{array}\right]=$ $\left[\begin{array}{c}-2 \\ -2 \\ 3\end{array}\right]$
(b) Find the β-coordinate vector of $y=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.

Solution. We have to solve $A x=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.
$\left[\begin{array}{lll|c}1 & 3 & 0 & 2 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & 2 & 3\end{array}\right] \widetilde{r_{2}:=\frac{1}{2} r_{2}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 3\end{array}\right] r_{2}: \widetilde{=r_{3}-r_{2}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 4\end{array}\right]$
$\widetilde{r_{3}:=\frac{1}{2} r_{3}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2\end{array}\right] r_{1}: \widetilde{=r_{1}-3 r_{2}}\left[\begin{array}{ccc|c}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2\end{array}\right]$.
So $[y]_{B}=\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]$.
6. Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 3 & 0 \\
1 & 2 & 5 & 1 \\
1 & 3 & 7 & 2
\end{array}\right]
$$

(a) Find bases for $\operatorname{Col}(M)$ and $\operatorname{Nul}(M)$, and then state the dimensions of these subspaces
Solution: $\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2\end{array}\right] r_{2}:=-r_{1}+\widetilde{r_{2}, r_{3}}:=-r_{2}+r_{3}\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 2\end{array}\right]$
$r_{3}:=\widetilde{-2 r_{2}}+r_{3}\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] r_{1}: \widetilde{-2 r_{2}}+r_{3}\left[\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So the first two vectors are pivot vectors and $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{Col}(M)$ and $\operatorname{dim}(\operatorname{Col}(M))=2$.
The solution to $M x=0$ is $x_{1}+x_{3}-x_{4}=0$ and $x_{2}+2 x_{3}+x_{4}=0$. So $x=\left[\begin{array}{c}-x_{3}+x_{4} \\ -2 x_{3}-x_{4} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]$. Hence the basis for $\operatorname{Nul}(M)$
is $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}$ and $\operatorname{dim}(\operatorname{Nul}(M))=2$.
(b) Express the third column vector M as a linear combination of the basis of $\operatorname{Col}(M)$. From the row reduced echelon form, we know that $\operatorname{column}(3)=1 \cdot \operatorname{column}(1)+2 \cdot \operatorname{column}(2)$
So $\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+2\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
7. Find a basis for the subspace spanned by the following vectors $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$. What is the dimension of the subspace?
Solution: Consider the matrix $A=\left[\begin{array}{cccc}1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2\end{array}\right]$
From previous example, we know that the first two vectors are pivot vectors and $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis. The dimension of the subspace is 2 .
8. Determine which sets in the following are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify your answer
(a) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]$. Solution: Since $\left[\begin{array}{c}2 \\ -4\end{array}\right]=-2\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, the set $\left\{\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]\right\}$ is dependent. It is not a basis.
(b) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$. Yes. This set forms a basis since they are independent and span R^{3}.
(c) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

This is not a basis since it doesn't span R^{3}.
(d) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$. This set forms a basis since they are independent and span R^{3}
(e) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$. This is not a basis since it is dependent.
9. Find an orthogonal basis for the column space of the following matrices.
(a) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 1 & -1 & -1 \\ 1 & 2 & 4\end{array}\right]$.
(b) $\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$

Solution: (a) We use the Gram-Schmidt process. Let $u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], u_{2}=$ $\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$ and $u_{3}=\left[\begin{array}{c}4 \\ -1 \\ 4\end{array}\right]$.
Now $v_{1}=u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], v_{2}=u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$. Compute $u_{2} \cdot v_{1}=3$ and $v_{1} \cdot v_{1}=3$. Then $v_{2}=u_{2}-\frac{5}{3} v_{1}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]-\frac{3}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.
Now $v_{3}=u_{3}-\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$. Compute $u_{3} \cdot v_{1}=7, u_{3} \cdot v_{2}=10$, $v_{2} \cdot v_{2}=6$. So $v_{3}=u_{3}-\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=\left[\begin{array}{c}4 \\ -1 \\ 4\end{array}\right]-\frac{7}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-\frac{10}{6}\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]=$ $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. This means that u_{3} is a linear combination of u_{1} and u_{2} (because $u_{3}-\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=0$). So an orthogonal basis for the column space is $\left.\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$.
(b) Let $u_{1}=\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}6 \\ -8 \\ -2 \\ -4\end{array}\right]$ and $u_{3}=\left[\begin{array}{c}6 \\ 3 \\ 6 \\ -3\end{array}\right]$.

The Gram-Schmidt process is $v_{1}=u_{1}=\left[\begin{array}{l}-1 \\ 3 \\ 1 \\ 1\end{array}\right]$,
$v_{2}=u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$. Compute $u_{2} \cdot v_{1}=\left[\begin{array}{c}6 \\ -8 \\ -2 \\ -4\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right]=-36$ and
$v_{1} \cdot v_{1}=\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right]=12$.
Using the formula

$$
\begin{aligned}
v_{2} & =u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} \\
& =\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\frac{(-36)}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Now $v_{3}=u_{3}-\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$. Compute $u_{3} \cdot v_{1}=\left[\begin{array}{c}6 \\ 3 \\ 6 \\ -3\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right]=6$,
$u_{3} \cdot v_{2}=\left[\begin{array}{c}6 \\ 3 \\ 6 \\ -3\end{array}\right] \cdot\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -1\end{array}\right]=30, v_{2} \cdot v_{2}=\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -1\end{array}\right]=12$.
Using the formula

$$
\begin{aligned}
v_{3} & =u_{3}-\frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} \\
& =\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{6}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{30}{12}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{5}{2}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right] .
\end{aligned}
$$

So $\left\{\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 3 \\ -1\end{array}\right]\right\}$ is an orthogonal basis for the column
space.
10. (a) Let $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ where $u_{1}=\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}1 \\ 4 \\ -1\end{array}\right]$. Find an orthogonal basis for W.

Solution:(a) We use the Gram-Schmidt process to find the orthogonal basis for W.

$$
v_{1}=u_{1}=\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right]
$$

$v_{2}=u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$. Compute $u_{2} \cdot v_{1}=\left[\begin{array}{c}1 \\ 4 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]=9$ and $v_{1} \cdot v_{1}=$ $\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]=9$.
Using the formula

$$
\begin{aligned}
v_{2} & =u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} \\
& =\left[\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right]-\frac{9}{9}\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

Thus $\left\{v_{1}=\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\}$ is an orthogonal basis for W.
(b)Find the closest point to $y=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right]$ in the subspace W.

Solution: The closest point to to $y=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right]$ in the subspace W is $\operatorname{Proj}_{W}(y)=\frac{y \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{y \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$.
Compute $y \cdot v_{1}=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]=1+10-2=9$,
$v_{1} \cdot v_{1}=\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]=1+4+4=9$,
$y \cdot v_{2}=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]=-2+10+1=9$,
$v_{2} \cdot v_{2}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]=4+4+1=9$.
So $\operatorname{Proj}_{W}(y)=\frac{y \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{y \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=\frac{9}{9} v_{1}+\frac{9}{9} v_{2}=v_{1}+v_{2}=\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]+\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]=$ $\left[\begin{array}{c}1 \\ 4 \\ -1\end{array}\right]$. Hence the closest point from y to W is $\left[\begin{array}{c}1 \\ 4 \\ -1\end{array}\right]$.
(c) Find the distance between the point y and the subspace W. Solution: The distance between y and the subspace W is $\left\|y-\operatorname{Proj}_{W}(y)\right\|$. Compute $y-\operatorname{Proj}_{W}(y)=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right]-\left[\begin{array}{c}1 \\ 4 \\ -1\end{array}\right]=\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]$ and
$\left\|y-\operatorname{Proj}_{W}(y)\right\|=\left\|\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]\right\|=\sqrt{(-2)^{2}+1^{2}+2^{2}}=\sqrt{9}=3$. Hence the distance between the point y and the subspace W is 3 .

