Solution to Linear Algebra (Math 2890) Review Problems II

1. (a) What is a subspace in \mathbb{R}^n ?

Solution: A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that satisfies the following three properties. (I) The zero vector is in H. (II) For each u and v in H, then u + v is in H. (III) For each u in H and each scalar c, the vector cu is in H.

(b) Is the set $\{(x, y, z)|x + y + z = 1\}$ a subspace? Solution: This is not a subspace since the zero vector (0, 0, 0) is not in the set.

(c) Is the set $\{(x, y, z)|x - y - z = 0, x + y - z = 0\}$ a subspace? Solution: Yes. This is a subspace. This can be regarded as the nullspace of the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$.

Here
$$Nul(A) = \{(x, y, z) | \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \}.$$

(d) What is a basis for a subspace?

Solution: A basis for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

(e) What is the dimension of a subspace?

Solution: The dimension of a nonzero subspace H is the number of vectors in any basis for H.

(f) What is the column space of a matrix? Solution: The column space of a matrix A is the set of the span of the column vectors of A.

(g) What is the null space of a matrix?

Solution: The null space of a matrix A is the set of all solutions to the homogeneous equation Ax = 0, i.e. $Nul(A) = \{x | Ax = 0\}$.

(h) What is the subspace spanned by the vectors v_1, v_2, \dots, v_p ? Solution: The subspace spanned by v_1, v_2, \dots, v_p is the set of all possible linear combination of v_1, v_2, \dots, v_p , i.e. $Span\{v_1, \dots, v_n\} = \{c_1v_1 + c_2v_2 + \dots + c_pv_p | c_1, c_2, \dots, c_p \text{ are real numbers}\}$

2. Find the inverses of the following matrices if they exist. $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 7 & -2 \\ -4 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ -1 & 0 & -1 \end{bmatrix}, C = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}.$$

Solution: (a) Since $det(A) = -1$, we have $A^{-1} = \frac{1}{-1} \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ -4 & -7 \end{bmatrix}$
(b)

$$r_{1} := r_{1} + r_{2} \begin{bmatrix} 1 & 0 & 0 & | & 3 & 1 & 4 \\ 0 & 1 & 0 & | & -1 & 0 & -1 \\ 0 & 0 & 1 & | & -3 & -1 & -5 \end{bmatrix}$$

So $B^{-1} = \begin{bmatrix} 3 & 1 & 4 \\ -1 & 0 & -1 \\ -3 & -1 & -5 \end{bmatrix}$.
(c)

$$\begin{bmatrix} 2 & 3 & 4 & | 1 & 0 & 0 \\ 5 & 6 & 7 & | 0 & 1 & 0 \\ 8 & 9 & 10 & | 0 & 0 & 1 \end{bmatrix} \overrightarrow{r_2 := r_2 - 2r_1} \begin{bmatrix} 2 & 3 & 4 & | 1 & 0 & 0 \\ 1 & 0 & -1 & | -2 & 1 & 0 \\ 8 & 9 & 10 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\overrightarrow{r_2 := r_2 - 2r_1, r_3 := r_3 - 8r_1} \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 2 & 3 & 4 & | & 1 & 0 & 0 \\ 8 & 9 & 10 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\overrightarrow{r_2 := r_2 - 2r_1, r_3 := r_3 - 8r_1} \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 0 & 3 & 6 & | & 3 & -1 & 0 \\ 0 & 9 & 18 & | & 16 & -8 & 1 \end{bmatrix}$$
$$\overrightarrow{r_3 := r_3 + (-3)r_2} \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 0 & 3 & 6 & | & 3 & -1 & 0 \\ 0 & 0 & 0 & | & 7 & -5 & 1 \end{bmatrix}$$

So C only has one free variable (or two pivot vectors) and C is not invertible.

3. (a) Let A be an 3×3 matrix. Suppose $A^3 + 2A^2 - 3A + 4I = 0$. Is A invertible? Express A^{-1} in terms of A if possible. Solution: From $A^3 + 2A^2 - 3A + 4I = 0$, we have $A^3 + 2A^2 - 3A = -4I$, $A(A^2 + 2A - 3I) = -4I$ and $A \cdot (-\frac{1}{4}(A^2 + 2A - 3I)) = I$. So $A^{-1} = -\frac{1}{4}(A^2 + 2A - 3I)$. (b) Suppose $A^3 = 0$. Is A invertible?

Solution: If A is invertible then $A^{-2}A^3 = A^{-2}0$ and A = 0 which is not invertible. So A is not invertible.

4. Find all values of a and b so that the subspace of \mathbb{R}^4 spanned by $\left\{ \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} b\\1\\-a\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\0\\0 \end{bmatrix} \right\}$ is two-dimensional.

Solution: Consider the matrix
$$A = \begin{bmatrix} 0 & b & -2 \\ 1 & 1 & 2 \\ 0 & -a & 0 \\ -1 & 1 & 0 \end{bmatrix}$$

$$\begin{split} & \overbrace{interchange\ first\ row\ and\ second\ row\ }}^{1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ -1 & 1 & 0 \end{bmatrix} \\ & r_{4} := \overrightarrow{r_{1}} + r_{4} \begin{bmatrix} 1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ 0 & 2 & 2 \end{bmatrix} \\ & interchange\ second\ row\ and\ forth\ row\ } \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -a & 0 \\ 0 & b & -2 \end{bmatrix} \\ & divide\ second\ row\ by\ 2 \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -a & 0 \\ 0 & b & -2 \end{bmatrix} \\ & r_{3} := r_{3} + \overrightarrow{ar_{2}, r_{4}} := r_{4} - br_{2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & a \\ 0 & 0 & -2 - b \end{bmatrix}. \end{split}$$

Now the first and second vectors are pivot vectors. So rank(A) = 2 if a = 0 and -2 - b = 0.

So
$$a = 0$$
 and $b = -2$
5. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \right\}$. You can assume that \mathcal{B} is a basis for \mathbb{R}^3

(a) Which vector x has the coordinate vector
$$[x]_B = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
.
Let $A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$. So $x = A[x]_B = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 - 3 + 0 \\ 0 - 2 + 0 \\ 0 - 1 + 4 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 3 \end{bmatrix}$
(b) Find the β -coordinate vector of $y = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$.

Solution. We have to solve
$$Ax = \begin{bmatrix} 2\\ -2\\ 3 \end{bmatrix}$$
.

$$\begin{bmatrix} 1 & 3 & 0 & | & 2\\ 0 & 2 & 0 & | & -2\\ 0 & 1 & 2 & | & 3 \end{bmatrix} \widetilde{r_2 := \frac{1}{2}r_2} \begin{bmatrix} 1 & 3 & 0 & | & 2\\ 0 & 1 & 0 & | & -1\\ 0 & 1 & 2 & | & 3 \end{bmatrix} \widetilde{r_2 := r_3 - r_2} \begin{bmatrix} 1 & 3 & 0 & | & 2\\ 0 & 1 & 0 & | & -1\\ 0 & 0 & 2 & | & 4 \end{bmatrix}$$

$$\widetilde{r_3 := \frac{1}{2}r_3} \begin{bmatrix} 1 & 3 & 0 & | & 2\\ 0 & 1 & 0 & | & -1\\ 0 & 0 & 1 & | & 2 \end{bmatrix}} r_1 := \widetilde{r_1 - 3r_2} \begin{bmatrix} 1 & 0 & 0 & | & 5\\ 0 & 1 & 0 & | & -1\\ 0 & 0 & 1 & | & 2 \end{bmatrix}.$$
So $[y]_B = \begin{bmatrix} 5\\ -1\\ 2 \end{bmatrix}$.

6. Let

$$M = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$$

(a) Find bases for Col(M) and Nul(M), and then state the dimensions of these subspaces

Solution:
$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix} r_2 := -r_1 + \widetilde{r_2, r_3} := -r_2 + r_3 \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 2 \end{bmatrix}$$

$$r_3 := -2r_2 + r_3 \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} r_1 := -2r_2 + r_3 \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So the first two vectors are pivot vectors and $\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \}$ is a basis for $Col(M)$ and $dim(Col(M)) = 2$.

The solution to Mx = 0 is $x_1 + x_3 - x_4 = 0$ and $x_2 + 2x_3 + x_4 = 0$. So $x = \begin{bmatrix} -x_3 + x_4 \\ -2x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$. Hence the basis for Nul(M)

is
$$\left\{ \begin{bmatrix} -1\\ -2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 0\\ 1 \end{bmatrix} \right\}$$
 and $dim(Nul(M)) = 2$.

(b) Express the third column vector M as a linear combination of the basis of Col(M). From the row reduced echelon form, we know that $column(3) = 1 \cdot column(1) + 2 \cdot column(2)$

So
$$\begin{bmatrix} 3\\5\\7 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} + 2 \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
.

7. Find a basis for the subspace spanned by the following vectors $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 5\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$. What is the dimension of the subspace? Solution: Consider the matrix $A = \begin{bmatrix} 1 & 1 & 3 & 0\\ 1 & 2 & 5 & 1\\ 1 & 3 & 7 & 2 \end{bmatrix}$ From previous example, we know that the first two vectors are pivot $\begin{bmatrix} 1 & 1 & 1\\ 1 & 3 & 7 & 2 \end{bmatrix}$

vectors and $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$ is a basis. The dimension of the subspace is 2.

- 8. Determine which sets in the following are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify your answer
 - (a) $\begin{bmatrix} -1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\-4 \end{bmatrix}$. Solution: Since $\begin{bmatrix} 2\\-4 \end{bmatrix} = -2\begin{bmatrix} -1\\2 \end{bmatrix}$, the set $\{\begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-4 \end{bmatrix}\}$ is dependent. It is not a basis. (b) $\begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\0 \end{bmatrix}$. Yes. This set forms a basis since they are independent and span R^3 . (c) $\begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

This is not a basis since it doesn't span \mathbb{R}^3 .

(d) $\begin{bmatrix} -1\\2\\\end{bmatrix}, \begin{bmatrix} 1\\-1\\\end{bmatrix}$. This set forms a basis since they are independent and span R^3 (e) $\begin{bmatrix} -1\\2\\1\\\end{bmatrix}, \begin{bmatrix} 1\\1\\0\\\end{bmatrix}, \begin{bmatrix} 2\\0\\0\\\end{bmatrix}, \begin{bmatrix} 2\\1\\3\\\end{bmatrix}$. This is not a basis since it is dependent.

9. Find an orthogonal basis for the column space of the following matrices.

 [1 6 6]

(a)
$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & -1 & -1 \\ 1 & 2 & 4 \end{bmatrix}$$
. (b) $\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$

Solution: (a) We use the Gram-Schmidt process. Let $u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $u_2 =$

$$\begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix} \text{ and } u_3 = \begin{bmatrix} 4\\ -1\\ 4 \end{bmatrix}.$$

Now $v_1 = u_1 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1.$ Compute $u_2 \cdot v_1 = 3$ and
 $v_1 \cdot v_1 = 3.$ Then $v_2 = u_2 - \frac{5}{3}v_1 = \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}.$
Now $v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2.$ Compute $u_3 \cdot v_1 = 7, u_3 \cdot v_2 = 10,$
 $v_2 \cdot v_2 = 6.$ So $v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2 = \begin{bmatrix} 4\\ -1\\ 4 \end{bmatrix} - \frac{7}{3} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} - \frac{10}{6} \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}.$ This means that u_3 is a linear combination of u_1 and u_2 (because $u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2 = 0$). So an orthogonal basis for the column space is $\left\{ \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -2\\ 1\\ 1 \end{bmatrix} \right\}.$

(b) Let
$$u_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 6 \\ -8 \\ -2 \\ -4 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \end{bmatrix}$.
The Gram-Schmidt process is $v_1 = u_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix}$,
 $v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$. Compute $u_2 \cdot v_1 = \begin{bmatrix} 6 \\ -8 \\ -2 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix} = -36$ and
 $v_1 \cdot v_1 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix} = 12$.
Using the formula

$$v_{2} = u_{2} - \frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$

$$= \begin{bmatrix} 6\\-8\\-2\\-4 \end{bmatrix} - \frac{(-36)}{12} \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix}$$

$$= \begin{bmatrix} 6\\-8\\-2\\-4 \end{bmatrix} + 3 \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix}$$

$$= \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}$$

Now
$$v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2$$
. Compute $u_3 \cdot v_1 = \begin{bmatrix} 6\\3\\6\\-3 \end{bmatrix} \cdot \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix} = 6$,

$$u_3 \cdot v_2 = \begin{bmatrix} 6\\3\\6\\-3 \end{bmatrix} \cdot \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix} = 30, v_2 \cdot v_2 = \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix} \cdot \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix} = 12.$$
Using the formula

$$v_{3} = u_{3} - \frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$

$$= \begin{bmatrix} 6\\3\\6\\-3 \end{bmatrix} - \frac{6}{12} \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix} - \frac{30}{12} \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}$$

$$= \begin{bmatrix} 6\\3\\6\\-3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix} - \frac{5}{2} \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}$$

$$= \begin{bmatrix} -1\\-1\\3\\-1 \end{bmatrix}.$$

So $\left\{ \begin{bmatrix} -1\\3\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\-1\\-1\\-1 \end{bmatrix} \right\}$ is an orthogonal basis for the column space.

10. (a) Let $W = Span\{u_1, u_2\}$ where $u_1 = \begin{bmatrix} -1\\ 2\\ -2 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1\\ 4\\ -1 \end{bmatrix}$. Find an orthogonal basis for W.

Solution:(a) We use the Gram-Schmidt process to find the orthogonal basis for W.

$$v_1 = u_1 = \begin{bmatrix} -1\\2\\-2 \end{bmatrix},$$

$$v_{2} = u_{2} - \frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}. \text{ Compute } u_{2} \cdot v_{1} = \begin{bmatrix} 1\\4\\-1 \end{bmatrix} \cdot \begin{bmatrix} -1\\2\\-2 \end{bmatrix} = 9 \text{ and } v_{1} \cdot v_{1} = \begin{bmatrix} -1\\2\\-2 \end{bmatrix} \cdot \begin{bmatrix} -1\\2\\-2 \end{bmatrix} = 9.$$
Using the formula

$$v_{2} = u_{2} - \frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$
$$= \begin{bmatrix} 1\\4\\-1 \end{bmatrix} - \frac{9}{9} \begin{bmatrix} -1\\2\\-2 \end{bmatrix}$$
$$= \begin{bmatrix} 1\\4\\-1 \end{bmatrix} - \begin{bmatrix} -1\\2\\-2 \end{bmatrix}$$
$$= \begin{bmatrix} 2\\2\\1 \end{bmatrix}$$

Thus $\left\{ v_1 = \begin{bmatrix} -1\\2\\-2 \end{bmatrix}, v_2 = \begin{bmatrix} 2\\2\\1 \end{bmatrix} \right\}$ is an orthogonal basis for W.

(b)Find the closest point to $y = \begin{bmatrix} -1\\5\\1 \end{bmatrix}$ in the subspace W.

Solution: The closest point to to $y = \begin{bmatrix} -1\\5\\1 \end{bmatrix}$ in the subspace W is $Proj_W(y) = \frac{y \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{y \cdot v_2}{v_2 \cdot v_2} v_2.$ Compute $y \cdot v_1 = \begin{bmatrix} -1\\5\\1 \end{bmatrix} \cdot \begin{bmatrix} -1\\2\\-2 \end{bmatrix} = 1 + 10 - 2 = 9,$ $v_1 \cdot v_1 = \begin{bmatrix} -1\\2\\-2 \end{bmatrix} \cdot \begin{bmatrix} -1\\2\\-2 \end{bmatrix} = 1 + 4 + 4 = 9,$

$$y \cdot v_2 = \begin{bmatrix} -1\\5\\1 \end{bmatrix} \cdot \begin{bmatrix} 2\\2\\1 \end{bmatrix} = -2 + 10 + 1 = 9,$$
$$v_2 \cdot v_2 = \begin{bmatrix} 2\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} 2\\2\\1 \end{bmatrix} = 4 + 4 + 1 = 9.$$

So
$$Proj_W(y) = \frac{y \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{y \cdot v_2}{v_2 \cdot v_2} v_2 = \frac{9}{9} v_1 + \frac{9}{9} v_2 = v_1 + v_2 = \begin{bmatrix} -1\\2\\-2 \end{bmatrix} + \begin{bmatrix} 2\\2\\1 \end{bmatrix} = \begin{bmatrix} 1\\4\\-1 \end{bmatrix}$$
. Hence the closest point from y to W is $\begin{bmatrix} 1\\4\\-1 \end{bmatrix}$.

(c) Find the distance between the point \boldsymbol{y} and the subspace W. Solution: The distance between y and the subspace W is $||y - Proj_W(y)||$.

Compute
$$y - Proj_W(y) = \begin{bmatrix} -1\\5\\1 \end{bmatrix} - \begin{bmatrix} 1\\4\\-1 \end{bmatrix} = \begin{bmatrix} -2\\1\\2 \end{bmatrix}$$
 and
 $||y - Proj_W(y)|| = ||\begin{bmatrix} -2\\1\\2 \end{bmatrix} || = \sqrt{(-2)^2 + 1^2 + 2^2} = \sqrt{9} = 3$. Hence
the distance between the point y and the subspace W is 3

the distance between the point y and the subspace W is 3.