(Math 2890) Review Problems II

Midterm II: March 31 at UH 1000 (Newton Lab)

You should practice using Maple to do the row reduction. Goto virtual lab: http://www.utoledo.edu/it/vlab/. Then Windows Basic Access Login .

Topics: 2.1-2.3, 2.8-2.9, 6.1-6.4 and the materials discussed in class. Office hours before the midterm:

Monday (March 29) 12-2 pm Wednesday (March 31) 12-2 p.m and 4-5 p.m

- 1. (a) What is a subspace in \mathbb{R}^n ?
 - (b) Is the set $\{(x, y, z) | x + y + z = 1\}$ a subspace?
 - (c) Is the set $\{(x, y, z) | x y z = 0, x + y z = 0\}$ a subspace?
 - (d) What is a basis for a subspace?
 - (e) What is the dimension of a subspace?
 - (f) What is the column space of a matrix?
 - (g) What is the null space of a matrix?
 - (h) What is the subspace spanned by the vectors v_1, v_2, \dots, v_p ?
- 2. Find the inverses of the following matrices if they exist.

$$A = \begin{bmatrix} 7 & -2 \\ -4 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ -1 & 0 & -1 \end{bmatrix}, C = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}.$$

- 3. (a) Let A be an 3 × 3 matrix. Suppose A³ + 2A² 3A + 4I = 0. Is A invertible? Express A⁻¹ in terms of A if possible.
 (b) Suppose A³ = 0. Is A invertible?
- 4. Find all values of a and b so that the subspace of \mathbb{R}^4 spanned by $\left\{ \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} b\\1\\-a\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\0\\0 \end{bmatrix} \right\}$ is two-dimensional. 5. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\2 \end{bmatrix} \right\}$. You can assume that \mathcal{B} is a basis for \mathbb{R}^3

(a) Which vector
$$x$$
 has the coordinate vector $[x]_B = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.
(b) Find the β -coordinate vector of $y = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$.

6. Let

$$M = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$$

(a) Find bases for Col(M) and Nul(M), and then state the dimensions of these subspaces.

(b) Express the third column vector A as a linear combination of the basis of Col(M).

- 7. Find a basis for the subspace spanned by the following vectors $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$. What is the dimension of the subspace?
- 8. Determine which sets in the following are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify your answer

$$(a) \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \end{bmatrix} . (b) \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} . (c) \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
$$(d) \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} . (e) \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

9. Find an orthogonal basis for the column space of the following matrices.

(a)
$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & -1 & -1 \\ 1 & 2 & 4 \end{bmatrix}$$
. (b) $\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$

10. (a) Let $W = Span\{u_1, u_2\}$ where $u_1 = \begin{bmatrix} -1\\ 2\\ -2 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1\\ 4\\ -1 \end{bmatrix}$. Find an orthogonal basis for W. (b) Find the closest point to $y = \begin{bmatrix} -1\\ 5\\ 1 \end{bmatrix}$ in the subspace W. (c) Find the distance between the point y and the subspace W.