(Math 2890) Review Problems II
Midterm II: March 31 at UH 1000 (Newton Lab)
You should practice using Maple to do the row reduction. Goto virtual lab: http://www.utoledo.edu/it/vlab/. Then Windows Basic Access Login .
Topics: 2.1-2.3, 2.8-2.9, 6.1-6.4 and the materials discussed in class. Office hours before the midterm:
Monday (March 29) 12-2 pm Wednesday (March 31) 12-2 p.m and 4-5 p.m

1. (a) What is a subspace in R^{n} ?
(b) Is the set $\{(x, y, z) \mid x+y+z=1\}$ a subspace?
(c) Is the set $\{(x, y, z) \mid x-y-z=0, x+y-z=0\}$ a subspace?
(d) What is a basis for a subspace?
(e) What is the dimension of a subspace?
(f) What is the column space of a matrix?
(g) What is the null space of a matrix?
(h) What is the subspace spanned by the vectors $v_{1}, v_{2}, \cdots, v_{p}$?
2. Find the inverses of the following matrices if they exist.

$$
A=\left[\begin{array}{cc}
7 & -2 \\
-4 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 3 & 1 \\
-1 & 0 & -1
\end{array}\right], C=\left[\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right]
$$

3. (a) Let A be an 3×3 matrix. Suppose $A^{3}+2 A^{2}-3 A+4 I=0$. Is A invertible? Express A^{-1} in terms of A if possible.
(b) Suppose $A^{3}=0$. Is A invertible?
4. Find all values of a and b so that the subspace of \mathbb{R}^{4} spanned by $\left\{\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}b \\ 1 \\ -a \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 0\end{array}\right]\right\}$ is two-dimensional.
5. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$. You can assume that \mathcal{B} is a basis for R^{3}
(a) Which vector x has the coordinate vector $[x]_{B}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.
(b) Find the β-coordinate vector of $y=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.
6. Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 3 & 0 \\
1 & 2 & 5 & 1 \\
1 & 3 & 7 & 2
\end{array}\right]
$$

(a) Find bases for $\operatorname{Col}(M)$ and $\operatorname{Nul}(M)$, and then state the dimensions of these subspaces.
(b) Express the third column vector A as a linear combination of the basis of $\operatorname{Col}(M)$.
7. Find a basis for the subspace spanned by the following vectors $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$. What is the dimension of the subspace?
8. Determine which sets in the following are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify your answer
(a) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]$.
(b) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$.
(c) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(d) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
(e) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$.
9. Find an orthogonal basis for the column space of the following matrices.
(a) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 1 & -1 & -1 \\ 1 & 2 & 4\end{array}\right]$.
(b) $\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$
10. (a) Let $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ where $u_{1}=\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}1 \\ 4 \\ -1\end{array}\right]$. Find an orthogonal basis for W.
(b)Find the closest point to $y=\left[\begin{array}{c}-1 \\ 5 \\ 1\end{array}\right]$ in the subspace W.
(c) Find the distance between the point y and the subspace W.

