Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let A be the matrix
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
.
(a) Prove that $det(A - \lambda I) = -(\lambda - 1)^2(\lambda - 4)$.
Solution: Compute $A - \lambda I = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{bmatrix}$ and
 $det(A - \lambda I) = (2 - \lambda)^3 + 1 + 1 - (2 - \lambda) - (2 - \lambda) - (2 - \lambda) = 8 - 12\lambda + 6\lambda^2 - \lambda^3 + 2 - 6 + 3\lambda = -\lambda^3 + 6\lambda^2 - 9\lambda + 4 = (1 - \lambda)^2(4 - \lambda)$.
(b) Find the eigenvalues and a basis of eigenvectors for A.
Solution: Solving $-(\lambda - 1)^2(\lambda - 4) = 0$, we know that the eigenvalues
are 1, 1 and 4.
When $\lambda = 1, A - (1)I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $x \in Null(A - I)$ if $x_1 + x_2 + x_3 = 0$. So $x_1 = -x_2 - x_3$ and
 $x = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. Thus $\{u_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ } is a basis of eigenvectors when $\lambda = 1$.
When $\lambda = 4, A - 4I = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$
 $interchange r_1 and r_2,$
 $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$
 $-2r_1 + r_2, -r_1 + r_3 \begin{bmatrix} 1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix}$

$$\widetilde{r_2 + r_3, r_2/(-3)} \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \widetilde{2r_2 + r_1} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} x \in Null(A - 4I) \text{ if } x_1 - x_3 = 0 \text{ and } x_2 - x_3 = 0. \text{ So } x = \begin{bmatrix} x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. \text{ Thus} \{u_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}\} \text{ is an eigenvector when } \lambda = 4.$$

(c) Diagonalize the matrix A if possible.

Solution: So $\{u_1 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, u_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, u_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}\}$ is an basis for R^3 which are eigenvectors corresponding to $\lambda = 1, \lambda = 1$ and $\lambda = 4$. Compute

Finally, we have
$$A = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} P^{-1}$$
 where $P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

(d) Find an expression for A^k . Solution: $A^k = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^k \end{bmatrix} P^{-1}$ where $P = [v_1 v_2 v_3] = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Note that $1^k = 1$.

(e) Find an expression for the matrix exponential e^A . Solution: $e^A = P \begin{bmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e^4 \end{bmatrix} P^{-1}$ where $P = [v_1 v_2 v_3] = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

Note that $e^1 = e$.

- 2. Let *B* be the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (a) Find the characteristic equation of A.

Solution: $B - \lambda I = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{bmatrix}$. So $det(B - \lambda I) = (2 - \lambda)^2(1 - \lambda)$. The characteristic equation of A is $(2 - \lambda)^2(1 - \lambda) = 0$.

(b) Find the eigenvalues and a basis of eigenvectors for B. Solving $(2 - \lambda)^2(1 - \lambda) = 0$, we know that the eigenvalues of B are $\lambda = 2$ and $\lambda = 1$.

When
$$\lambda = 2$$
, we have

$$B - \lambda I = \begin{bmatrix} 2 - 2 & 1 & 1 \\ 0 & 2 - 2 & 1 \\ 0 & 0 & 1 - 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
$$r_2 := r_2 + \widetilde{r_3, r_1} := r_1 + r_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solution of (B - 2I)x = 0 is $x_2 = 0$, $x_3 = 0$ and x_1 is free. So $Null(B - 2I) = \left\{ \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$

The basis for the eigenspace corresponding to eigenvalue 2 is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$.

When
$$\lambda = 1$$
, we have

$$B - \lambda I = \begin{bmatrix} 2 - 1 & 1 & 1 \\ 0 & 2 - 1 & 1 \\ 0 & 0 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$r_1 := r_1 - r_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solution of (B - I)x = 0 is $x_1 = 0$ and $x_2 + x_3 = 0$ So $x_1 = 0$, $x_2 = -x_3$ and x_3 is free. $Null(B - I) = \{ \begin{bmatrix} 0 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \}.$ The basis for the eigenspace corresponding to eigenvalue 1 is $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue 2 and $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue 1

(c) Diagonalize the matrix B if possible.

From (b), we know that B has only two independent eigenvectors and B is not diagonzalizable.

3. Let A be the matrix

$$A = \begin{bmatrix} -4 & -5 & 5\\ -5 & -4 & -5\\ 5 & -5 & -4 \end{bmatrix}$$

(a) Prove that $det(A - \lambda I) = (9 + \lambda)^2 (6 - \lambda)$. You may use the fact that $(9 + \lambda)^2 (6 - \lambda) = 486 + 27 \lambda - 12 \lambda^2 - \lambda^3$.

Solution: Compute
$$A - \lambda I = \begin{vmatrix} -4 - \lambda & -5 & 5 \\ -5 & -4 - \lambda & -5 \\ 5 & -5 & -4 - \lambda \end{vmatrix}$$
 and

 $det(A - \lambda I) = (-4 - \lambda)^3 + (-5)(-5)5 + 5(-5)(-5)$ $- 5(-4 - \lambda)5 - (-5)(-5)(-4 - \lambda) - (-4 - \lambda)(-5)(-5)$ $= (-4 - \lambda)(16 + 8\lambda + \lambda^2) + 125 + 125 + 100 + 25\lambda + 100 + 25\lambda + 100 + 25\lambda$ $= -64 - 32\lambda - 4\lambda^2 - 16\lambda - 8\lambda^2 - \lambda^3 + 550 + 75\lambda$ $= 486 + 27\lambda - 12\lambda^2 - \lambda^3 = (9 + \lambda)^2(6 - \lambda).$

(b) Orthogonally diagonalizes the matrix A, giving an orthogonal matrix P and a diagonal matrix D such that $A = PDP^t$. Solution: Solving $det(A - \lambda I) = (9 + \lambda)^2(6 - \lambda) = 0$, we know that the eigenvalues are -9, -9 and 6.

When
$$\lambda = -9$$
, $A - (-9)I = A + 9I = \begin{bmatrix} -4+9 & -5 & 5\\ -5 & -4+9 & -5\\ 5 & -5 & -4+9 \end{bmatrix}$

$$\begin{split} &= \begin{bmatrix} 5 & -5 & 5 \\ -5 & 5 & -5 \\ 5 & -5 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &x \in Null(A - I) \text{ if } x_1 - x_2 + x_3 = 0. \text{ So } x_1 = x_2 - x_3 \text{ and} \\ &x = \begin{bmatrix} x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}. \text{ Thus } \{u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \} \text{ is a basis of eigenvectors when } \lambda = -9. \\ \text{Now we use Gram-Schmidt process to find an orthogonal basis for} \\ Null(A - (-9)I). \\ \text{Let } v_1 = u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1. \\ \text{Compute } u_2 \cdot v_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - (\frac{-1}{2}) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + (\frac{1}{2}) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ \frac{1}{2} \end{bmatrix}. \\ \text{Now we can replace } v_2 \text{ by } 2v_2 = 2 \begin{bmatrix} -1 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \\ \text{Hence } \{v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} \} \text{ is an orthogonal basis of eigenvectors when } \lambda = -9. \\ \text{When } \lambda = 6, A - 6I = \begin{bmatrix} -4 - 6 & -5 & 5 \\ -5 & -4 - 6 & -5 \\ 5 & -5 & -4 - 6 \end{bmatrix} \sim \begin{bmatrix} -10 & -5 \\ -5 & -10 \\ 5 & -5 & -4 - 6 \end{bmatrix} \\ \sim \begin{bmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix} \text{ interchange } r_1 \text{ and } r_3, \begin{bmatrix} 1 & -1 & -2 \\ -1 & -2 & -1 \\ -2 & -1 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 5\\ -5\\ -10 \end{bmatrix} \sim$

$$\begin{split} r_{2} &:= \widetilde{r_{2}} + r_{1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & -3 & -3 \\ -2 & -1 & 1 \end{bmatrix} \\ r_{3} &:= \widetilde{r_{3}} + 2r_{1} \begin{bmatrix} 1 & -1 & 2 \\ 0 & -3 & -3 \\ 0 & -3 & -3 \end{bmatrix} r_{3} := r_{3} - \widetilde{r_{2}}, r_{2} := r_{2}/3 \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} r_{1} := \widetilde{r_{1}} + r_{2} \begin{bmatrix} x_{3} \\ x_{3} \end{bmatrix} = x_{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}. \text{ Thus } \{v_{3} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}\} \text{ is an eigenvector when } \lambda = 6. \\ \text{So } \{v_{1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, v_{3} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}\} \text{ is an orthogonal basis} \\ \text{for } R^{3} \text{ which are eigenvectors corresponding to } \lambda = -9, \lambda = -9 \\ \text{and } \lambda = 6. \text{ Compute } \|v_{1}\| = \sqrt{2}, \|v_{2}\| = \sqrt{2}, \|v_{2}\| = \sqrt{6} \text{ and } \|v_{3}\| = \sqrt{3}. \\ \text{Thus } \{\frac{v_{1}}{\|v_{1}\|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \frac{v_{2}}{\|v_{2}\|} = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \frac{v_{3}}{\|v_{3}\|} = \begin{bmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}\} \text{ is an or-} \\ \text{thonormal basis for } R^{3} \text{ which are eigenvectors corresponding to } \lambda = -9, \lambda = -9 \\ \text{and } \lambda = 6. \\ \text{Finally, we have } A = P\begin{bmatrix} -9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 6 \end{bmatrix} P^{T} \text{ where } P = \begin{bmatrix} \frac{v_{1}}{|v_{2}|| & \frac{v_{3}}{|v_{3}||} \\ \frac{1}{|v_{2}|| & |v_{3}||} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}. \end{split}$$

(c) Write the quadratic form associated with A using variables x_1, x_2 , and x_3 ?

Solution: Recall that $A = \begin{bmatrix} -4 & -5 & 5 \\ -5 & -4 & -5 \\ 5 & -5 & -4 \end{bmatrix}$ and the quadratic

form in x_1, x_2 and x_3 is $Q_A(x) = x^T A x = -4x_1^2 - 4x_2^2 - 4x_3^2 - 10x_1x_2 + 10x_1x_3 - 10x_2x_3$. Note that this quadratic is indefinite (b/c it's eigenvalues are -9, -9, 6.)

(d) Find an expression for A^k and e^A . Solution: From $A = P \begin{bmatrix} -9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 6 \end{bmatrix} P^T$ where $P = \begin{vmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{vmatrix}$, we have We have $A^{k} = P\begin{bmatrix} (-9)^{k} & 0 & 0\\ 0 & (-9)^{k} & 0\\ 0 & 0 & 6^{k} \end{bmatrix} P^{T}$ and $e^{A} = P\begin{bmatrix} e^{-9} & 0 & 0\\ 0 & e^{-9} & 0\\ 0 & 0 & e^{6} \end{bmatrix} P^{T}.$ (e) What's $A^5(\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix})$? Solution: Recall that $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} -4 & -5 & 5\\ -5 & -4 & -5\\ 5 & -5 & -4 \end{bmatrix}$ with eigenvalue 6, so we have $A\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} = 6 \begin{vmatrix} 1\\ -1\\ 1 \end{vmatrix}$, $A^{2}\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} = A\begin{pmatrix} 6 & 1\\ -1\\ 1 \end{pmatrix} = 6A\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} = 6^{2} \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}.$ Similarly, we get $A^{k}\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 6^{k} \begin{vmatrix} 1 \\ -1 \\ 1 \end{vmatrix}$ and $A^{5}\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 6^{5} \begin{bmatrix} 1 \\ -1 \\ 1 \end{vmatrix}$. (f) What is $\lim_{n\to\infty} A^{-n} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$? Solution: We have $A^{-n}\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} = 6^{-n} \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} = \begin{vmatrix} \frac{1}{6^n}\\ -\frac{1}{6^n}\\ \frac{1}{2} \end{vmatrix}$. So $\lim_{n \to \infty} A^{-n}\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} =$ $\lim_{n \to \infty} \left| \frac{\frac{1}{6^n}}{-\frac{1}{6^n}} \right| = \left| \begin{matrix} 0\\ 0\\ 0 \\ 0 \end{matrix} \right|.$

4. Classify the quadratic forms for the following quadratic forms. Make a change of variable x = Py, that transforms the quadratic form into one with no cross term. Also write the new quadratic form.

(a)
$$9x_1^2 - 8x_1x_2 + 3x_2^2$$
.
Let $Q(x_1, x_2) = 9x_1^2 - 8x_1x_2 + 3x_2^2 = x^T \begin{bmatrix} 9 & -4 \\ -4 & 3 \end{bmatrix} x$ and $A = \begin{bmatrix} 9 & -4 \\ -4 & 3 \end{bmatrix}$. We want to orthogonally diagonalizes A .
Compute $A - \lambda I = \begin{bmatrix} 9 - \lambda & -4 \\ -4 & 3 - \lambda \end{bmatrix}$ and $det(A - \lambda I) = (9 - \lambda)(3 - \lambda) - 16 = \lambda^2 - 12\lambda + 27 - 16 = \lambda^2 - 12\lambda + 11 = (\lambda - 1)(\lambda - 11)$.
So $\lambda = 1$ or $\lambda = 11$. Since the eigenvalues of A are all positive, we know that the quadratic form is positive definite.
Now we diagonalize A .
 $\lambda = 1$: $A - 1 \cdot I = \begin{bmatrix} 9 - 1 & -4 \\ -4 & 3 - 1 \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$. So $x \in Null(A - 1 \cdot I)$ iff $2x_1 - x_2 = 0$. So $x_2 = 2x_1$ and $x = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 1$.
 $\lambda = 11$: $A - 11 \cdot I = \begin{bmatrix} 9 - 11 & -4 \\ -4 & 3 - 11 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ -4 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$.
So $x \in Null(A - 11 \cdot I)$ iff $x_1 + 2x_2 = 0$. So $x_1 = -2x_2$ and $x = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 1$.
Now $\{v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ is an orthogonal basis. Compute $||v_1|| = \sqrt{5}$ and $||v_2|| = \sqrt{5}$. Thus $\{\frac{v_1}{||v_1||} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \sqrt{5} \end{bmatrix}, \frac{v_2}{||v_2||} = \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \sqrt{5} \end{bmatrix}$ is an orthonormal basis of eigenvectors. So we have $A = P \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} P^T$
where $P = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{\sqrt{5}}{\sqrt{5}} \end{bmatrix}$.

Now
$$Q(x) = x^T A x = x^T P \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} P^T x = y^T \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} y = y_1^2 + 11y_2^2$$
 if $y = P^T x$. So $Py = PP^T x$, $x = Py$ and $P = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$.

Note that we have used the fact that $PP^T = I$.

(b)
$$-5x_1^2 + 4x_1x_2 - 2x_2^2$$
.

Let
$$Q(x_1, x_2) = -5x_1^2 + 4x_1x_2 - 2x_2^2 = x^T \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} x$$
 and $A = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix}$. We want to orthogonally diagonalizes A .
Compute $A - \lambda I = \begin{bmatrix} -5 - \lambda & 2\\ 2 & -2 - \lambda \end{bmatrix}$ and $det(A - \lambda I) = (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 10 - 4 = \lambda^2 + 7\lambda + 6 = (\lambda + 1)(\lambda + 6)$.
So $\lambda = -1$ or $\lambda = -6$. Since the eigenvalues of A are all negative, we know that the quadratic form is negative definite.
Now we diagonalize A .
 $\lambda = -1$: $A - (-1) \cdot I = \begin{bmatrix} -5 - (-1) & 2\\ 2 & -2 - (-1) \end{bmatrix} = \begin{bmatrix} -4 & 2\\ 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 2 & -1\\ 0 & 0 \end{bmatrix}$.
So $x \in Null(A - 1 \cdot I)$ iff $2x_1 - x_2 = 0$. So $x_2 = 2x_1$ and $x = \begin{bmatrix} x_1\\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1\\ 2 \end{bmatrix}$. So $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = -1$.
 $\lambda = -6$: $A - (-6) \cdot I = \begin{bmatrix} -5 - (-6) & 2\\ 2 & (-2) - (-6) \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2\\ 0 & 0 \end{bmatrix}$.
So $x \in Null(A - 11 \cdot I)$ iff $x_1 + 2x_2 = 0$. So $x_1 = -2x_2$ and $x = \begin{bmatrix} -2x_2\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2\\ 1 \end{bmatrix}$. So $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = -6$.
Now $\{v_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -2\\ 1 \end{bmatrix}$ is an orthogonal basis. Compute $||v_1|| = \sqrt{5}$ and $||v_2|| = \sqrt{5}$. Thus $\{\frac{v_1}{||v_1||} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \frac{v_2}{||v_2||} = \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$ is an orthonormal basis of eigenvectors. So we have $A = P \begin{bmatrix} -1 & 0\\ 0 & -6 \end{bmatrix} P^T$

where
$$P = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$
.
Now $Q(x) = x^T A x = x^T P \begin{bmatrix} -1 & 0 \\ 0 & -6 \end{bmatrix} P^T x = y^T \begin{bmatrix} -1 & 0 \\ 0 & -6 \end{bmatrix} y = -y_1^2 - 6y_2^2$ if $y = P^T x$. So $Py = PP^T x$, $x = Py$ and $P = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$.

(c)
$$8x_1^2 + 6x_1x_2$$
.

Let $Q(x_1, x_2) = 8x_1^2 + 6x_1x_2 = x^T \begin{bmatrix} 8 & 3 \\ 3 & 0 \end{bmatrix} x$ and $A = \begin{bmatrix} 8 & 3 \\ 3 & 0 \end{bmatrix}$. We want to orthogonally diagonalizes A.

Compute $A - \lambda I = \begin{bmatrix} 8 - \lambda & 3 \\ 3 & 0 - \lambda \end{bmatrix}$ and $det(A - \lambda I) = (8 - \lambda) \cdot (-\lambda) - 9 = \lambda^2 - 8\lambda - 9 = (\lambda + 1)(\lambda - 9)$. So $\lambda = -1$ or $\lambda = 9$. Since A has positive and negative eigenvalues, we know that the quadratic form is indefinite.

Now we diagonalize A.

$$\begin{split} \lambda &= -1; \ A - (-1) \cdot I = \begin{bmatrix} 8 - (-1) & 3 \\ 3 & 0 - (-1) \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}.\\ \text{So } x \in Null(A - 1 \cdot I) \text{ iff } 3x_1 + x_2 = 0. \text{ So } x_2 = -3x_1 \text{ and}\\ x &= \begin{bmatrix} x_1 \\ -3x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -3 \end{bmatrix}. \text{ So } \begin{bmatrix} 1 \\ -3 \end{bmatrix} \text{ is an eigenvector corresponding}\\ \text{to eigenvalue } \lambda = -1.\\ \lambda &= 9; \ A - 9 \cdot I = \begin{bmatrix} 8 - 9 & 3 \\ 3 & 0 - 9 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}. \text{ So}\\ x \in Null(A - 9 \cdot I) \text{ iff } x_1 - 3x_2 = 0. \text{ So } x_1 = 3x_2 \text{ and } x = \begin{bmatrix} 3x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}. \text{ So } \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ is an eigenvector corresponding to eigenvalue } \lambda = 9.\\ \text{Now } \{v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}\} \text{ is an orthogonal basis. Compute}\\ ||v_1|| &= \sqrt{10} \text{ and } ||v_2|| = \sqrt{10}. \text{ Thus } \{\frac{v_1}{||v_1||} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} \end{bmatrix}, \frac{v_2}{||v_2||} = 4 \end{bmatrix}$$

$$\begin{bmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$
 is an orthonormal basis of eigenvectors. So we have $A = P\begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} P^T$ where $P = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}$.
Now $Q(x) = x^T A x = x^T P \begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} P^T x = y^T \begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} y = -y_1^2 + 9y_2^2$ if $y = P^T x$. So $Py = PP^T x$, $x = Py$ and $P \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}$.

5. (a) Find a 3×3 matrix A which is not diagonalizable?

Solution: Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Then $det(A - \lambda I) = -\lambda^3$ and the eigenvalues of A are zero.
 $A - 0 \cdot I = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. The eigenvector $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfies $x_2 = 0$ and $x_3 = 0$. The eigenvector is $x = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. So there is only one eigenvector for A and A is not diagonalizable.

(b) Give an example of a 2×2 matrix which is diagonalizable but not orthogonally diagonalizable?

Solution: Let $A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$. Then $det(A - \lambda I) == \begin{bmatrix} 1 - \lambda & 4 \\ 1 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 - 4 = (1 - \lambda)^2 - 2^2 = (1 - \lambda - 2)(1 - \lambda + 2) = (-\lambda - 1)(3 - \lambda)$. So A has two distinct eigenvalues and A is diagonalizable. But A is not symmetric. So A is not orthogonally diagonalizable.

6. Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix}$$
.

(a) Find the condition on
$$b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$
 such that $Ax = b$ is solvable.

Solution:

Consider the augmented matrix
$$[A \ b] = \begin{bmatrix} 1 & 2 & 2 & | \ b_1 \\ 1 & 1 & 0 & | \ b_2 \\ 0 & 1 & 2 & | \ b_3 \\ -1 & 0 & -1 & | \ b_4 \end{bmatrix}$$

 $a_2 := \widehat{a_2 + (-1)}a_1 \begin{bmatrix} 1 & 2 & 2 & | \ b_1 \\ 0 & -1 & -2 & | \ b_2 - b_1 \\ 0 & 1 & 2 & | \ b_3 \\ -1 & 0 & -1 & | \ b_4 \end{bmatrix}$
 $a_4 := \widehat{a_4} + a_1 \begin{bmatrix} 1 & 2 & 2 & | \ b_1 \\ 0 & -1 & -2 & | \ b_2 - b_1 \\ 0 & 1 & 2 & | \ b_3 \\ 0 & 2 & 1 & | \ b_4 + b_1 \end{bmatrix}$
 $a_2 := -a_2 \begin{bmatrix} 1 & 2 & 2 & | \ b_1 \\ 0 & 1 & 2 & | \ b_3 \\ 0 & 2 & 1 & | \ b_4 + b_1 \end{bmatrix}$
 $a_3 := a_3 - \widehat{a_2, a_4} := a_4 - 2a_2 \begin{bmatrix} 1 & 2 & 2 & | \ b_1 \\ 0 & 1 & 2 & | \ -b_2 + b_1 \\ 0 & 0 & 0 & | \ b_3 + b_2 - b_1 \\ 0 & 0 & -3 & | \ b_4 - b_1 + 2 \ b_2 \end{bmatrix}$
From here, we are get that $A_7 = b$ here a solution if $b_1 + b_2 - b_1$.

From here, we can see that Ax = b has a solution if $b_3 + b_2 - b_1 = 0$.

(b) What is the column space of A?

Solution:

The column space is the subspace spanned by the column vectors. From the computation in (a), we know that the column vectors of $\begin{bmatrix} 1 & 1 & 2 & 2 & -2 \end{bmatrix}$

A are independent. So
$$Col(A) = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 2 \\ -1 \end{bmatrix} \right\}.$$

(c) Describe the subspace $col(A)^{\perp}$ and find an basis for $col(A)^{\perp}$. Solution: $col(A)^{\perp} = \{x | x \cdot y = 0 \text{ for all } y \in col(A)\}$

Solution.
$$\operatorname{cor}(A) = \{x_1 x \cdot y = 0 \text{ for all } y \in \operatorname{cor}(A)\}$$

$$= \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix} = 0, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \\ -1 \end{bmatrix} = 0 \}$$

$$= \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + x_2 - x_4 = 0, 2x_1 + x_2 + x_3 = 0, 2x_1 + 2x_3 - x_4 = 0 \}$$

$$\operatorname{Consider} \begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} r_2 := r_2 - 2r_1 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 2 \\ 2 & 0 & 2 & -1 \end{bmatrix}$$

$$r_3 := \widetilde{r_3} - 2r_1 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 2 \\ 0 & -2 & 2 & 1 \\ 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & -3 \end{bmatrix} r_2 := -r_2 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & -2 & 2 & 1 \end{bmatrix}$$

$$r_3 := \widetilde{r_3} + 2r_2 \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & -3 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} r_1 := r_1 - r_2 \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

$$r_3 := \widetilde{r_3}/(-3) \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} r_1 := r_1 - \widetilde{r_3}, \widetilde{r_2} := r_2 + 2r_3 \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{aligned} x_1 &= -x_3, \ x_2 = x_3 \ , \ x_4 = 0 \ \text{and} \ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_3 \\ x_3 \\ 0 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}. \\ \text{Hence } col(A)^{\perp} = span\{\begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}\} \ \text{and} \ \{\begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}\} \ \text{is a basis for } col(A)^{\perp}. \\ \text{The dimension of } col(A)^{\perp} \ \text{is } 1. \end{aligned}$$

(d) Use Gram-Schmidt process to find an orthogonal basis for the column of the matrix A. Solution:

(e) Find an orthonormal basis for the column of the matrix A. Solution:
Note that
$$||v_1|| = \sqrt{v_1 \cdot v_1} = \sqrt{3}$$
, $||v_2|| = \sqrt{v_2 \cdot v_2} = \sqrt{3}$ and

$$||v_3|| = \sqrt{v_3 \cdot v_3} = \sqrt{3}. \text{ Hence } \left\{ \frac{v_1}{||v_1||}, \frac{v_2}{||v_2||}, \frac{v_3}{||v_3||} \right\} = \left\{ \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 0 \\ -\frac{1}{\sqrt{3}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix} \right\}$$
 is an orthonormal basis for $Col(A)$

(f) Find the orthogonal projection of $y = \begin{vmatrix} 3 \\ 10 \end{vmatrix}$ onto the column space of A and write $y = \hat{y} + z$ where $\hat{y} \in col(A)$ and $z \in col(A)^{\perp}$. Also find the shortest distance from y to Col(A). Solution: Since $\{v_1 = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\-1\\1\\1 \end{bmatrix}\}$ is an orthogonal basis for Col(A), $y = \hat{y} + z$ where $\hat{y} = \frac{y \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{y \cdot v_2}{v_2 \cdot v_2} v_2 + \frac{y \cdot v_3}{v_3 \cdot v_3} v_3 \in Col(A)$ and $z = y - \hat{y} \in Col(A)^{\perp}$. Compute $y \cdot v_1 = \begin{bmatrix} 7\\3\\10\\-2 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} = 7 + 3 + 0 + 2 = 12, v_1 \cdot v_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix} =$ $1 + 1 + 1 = 3, y \cdot v_2 = \begin{vmatrix} 1 \\ 3 \\ 10 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{vmatrix} = 7 + 0 + 10 - 2 = 15,$ $v_2 \cdot v_2 = \begin{vmatrix} 0\\1 \end{vmatrix} \cdot \begin{vmatrix} 0\\1 \end{vmatrix} = 3,$ $y \cdot v_3 = \begin{bmatrix} 7\\3\\10\\1 \end{bmatrix} \cdot \begin{bmatrix} 0\\-1\\1\\1 \end{bmatrix} = 0 - 3 + 10 + 2 = 9, v_3 \cdot v_3 = \begin{bmatrix} 0\\-1\\1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 0\\-1\\1\\1\\1\\1\\1 \end{bmatrix} = 3.$ So $\hat{y} = \frac{12}{3} \begin{vmatrix} 1 \\ 1 \\ 0 \\ 1 \end{vmatrix} + \frac{(15)}{3} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{vmatrix} + \frac{9}{3} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{vmatrix} = \begin{bmatrix} 4+5+0 \\ 4+0-3 \\ 0+5+3 \\ -4+5-3 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ 8 \\ -2 \end{bmatrix}$ and $z = y - \widehat{y} = \begin{bmatrix} 7\\3\\-2\\-2 \end{bmatrix} - \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix} = \begin{bmatrix} 2\\-2\\2\\0 \end{bmatrix}$. Note that $z \in Col(A)^{\perp} =$ $span\{ \left| \begin{array}{c} 1\\ -1\\ 1 \end{array} \right| \}.$ The shortest distance from y to $Col(A) = ||y - \hat{y}|| = ||z|| =$

 $\sqrt{(2)^2 + (-2)^2 + (2)^2 + (0)^2} = \sqrt{12}.$

- (g) Using previous result to explain why Ax = y has no solution. Solution: Since the orthogonal projection of y to Col(A) is not y, this implies that y is not in Col(A). So Ax = y has no solution.
- (h) Use orthogonal projection to find the least square solution of Ax = y.

Solution: The least square solution of Ax = y is the solution of $Ax = \hat{y} = \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix}$ where \hat{y} is the orthogonal projection of y onto the column space of A (from part (f), we know $\hat{y} = \begin{bmatrix} 9\\1\\8\\-2 \end{bmatrix}$.)

Consider the augmented matrix
$$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 7 \end{bmatrix}$$

$$\begin{split} [A\,\widehat{y}] &= \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & | & 8 \\ -1 & 0 & -1 & | & -2 \end{bmatrix} r_2 := r_2 - \widetilde{r_1, r_3} := r_3 + r_1 \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 0 & -1 & -2 & | & -8 \\ 0 & 1 & 2 & | & 8 \\ 0 & 2 & 1 & | & 7 \end{bmatrix} \\ r_3 := r_3 + \widetilde{r_2, r_4} := r_4 + r_1 \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 0 & -1 & -2 & | & -8 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & -3 & | & -9 \end{bmatrix} \\ r_2 := -r_2, \widetilde{r_4} := \widetilde{r_4/(-3)}, r_3 \leftrightarrow r_4 \begin{bmatrix} 1 & 2 & 2 & | & 9 \\ 0 & -1 & -2 & | & -8 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & -3 & | & -9 \end{bmatrix} \\ r_2 := r_2 - \widetilde{2r_3, r_1} := r_1 - 2r_3 \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \end{split}$$

(i) Use normal equation to find the least square solution of Ax = y. Solution: The normal equation is $A^T A x = A^T y$. Compute $A^T A =$

$$\begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 6 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

and $A^{T}y = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 10 \\ -2 \end{bmatrix} = \begin{bmatrix} 12 \\ 27 \\ 36 \end{bmatrix}.$
So the normal equation $A^{T}Ax = A^{T}y$ is
 $\begin{bmatrix} 3 & 3 & 3 \\ 3 & 6 & 6 \\ 3 & 6 & 9 \end{bmatrix} x = \begin{bmatrix} 12 \\ 27 \\ 36 \end{bmatrix}.$
Consider the augmented matrix $\begin{bmatrix} 3 & 3 & 3 & | 12 \\ 3 & 6 & 6 & | 27 \\ 3 & 6 & 9 & | 36 \end{bmatrix} \sim$
 $r_{2} := r_{2} - r_{1}, r_{3} := r_{3} - r_{1} \begin{bmatrix} 3 & 3 & 3 & | 12 \\ 0 & 3 & 3 & | 12 \\ 0 & 3 & 6 & | 24 \end{bmatrix}$

$$\sim r_{3} := r_{3} - r_{2} \begin{bmatrix} 3 & 3 & 3 & | & 12 \\ 0 & 3 & 3 & | & 15 \\ 0 & 0 & 3 & | & 9 \end{bmatrix} \sim r_{1} := r_{1}/3, r_{2} := r_{2}/3, r_{3} := r_{3}/3 \begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & 1 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$
$$\sim r_{2} := r_{2} - r_{3}, r_{1} := r_{1} - r_{3} \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$
$$\sim r_{1} := r_{1} - r_{2}, \begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$
So $x_{1} = -1, x_{2} = 2, x_{3} = 3$ and the least square solution of $Ax = y$ is $x = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

7. Find the equation y = a + mx of the least square line that best fits the given data points. (0, 1), (1, 1), (3, 2).

Solution: We try to solve the equations 1 = a, 1 = a + m, 2 = a + 3m, that is,

that is, a = 1, a + m = 1 and a + 3m = 2. It corresponding to the linear system $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ m \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$. We solve the normal equation $A^{T}A \begin{bmatrix} a \\ m \end{bmatrix} = A^{T} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

Compute
$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 4 & 10 \end{bmatrix}$$
 and
 $A^{T}\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$.
Consider the augmented matrix
 $\begin{bmatrix} 3 & 4 & | & 4 \\ 4 & 10 & | & 7 \end{bmatrix} \sim r_{2} := r_{2} - \frac{4}{3}r_{1}\begin{bmatrix} 3 & 4 & | & 4 \\ 0 & \frac{14}{3} & | & \frac{5}{3} \end{bmatrix}$
 $\sim r_{2} := \frac{3}{14}r_{2}\begin{bmatrix} 3 & 4 & | & 4 \\ 0 & 1 & | & \frac{5}{14} \end{bmatrix} \sim r_{1} := r_{1} - 4r_{2}\begin{bmatrix} 3 & 0 & | & \frac{18}{7} \\ 0 & 1 & | & \frac{5}{14} \end{bmatrix}$
 $\sim r_{1} := r_{1}/3\begin{bmatrix} 1 & 0 & | & \frac{6}{7} \\ 0 & 1 & | & \frac{5}{14} \end{bmatrix}$

So the least square solution is $a = \frac{6}{7}$ and $m = \frac{5}{14}$. The equation $y = \frac{6}{7} + \frac{5}{14}x$ is the least square line that best fits the given data points. (0, 1), (1, 1), (3, 2).

8. (a) Let $A = \begin{bmatrix} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4 \end{bmatrix}$. Find the inverse matrix of A if possible. Solution: Consider the augmented matrix $[A I] = \begin{bmatrix} 3 & 6 & 7 & | & 1 & 0 & 0 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 2 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \end{bmatrix}$

$$\begin{split} & \overbrace{r_{1}:=r_{1}-r_{3}} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 2 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix} \\ & \overbrace{r_{3}:=r_{3}-2r_{1}} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 2 & 1 & | & 0 & 1 & 0 \\ 0 & -3 & -2 & | & -2 & 0 & 3 \end{bmatrix} \\ & \overbrace{r_{2}:=r_{2}+r_{3}} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & -1 & -1 & | & -2 & 1 & 3 \\ 0 & -3 & -2 & | & -2 & 0 & 3 \end{bmatrix} \overbrace{r_{2}:=-r_{2}} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & -3 & -2 & | & -2 & 0 & 3 \end{bmatrix} \end{split}$$

$$\begin{split} & \overbrace{r_3}:=r_3+3r_2 \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & -1 \\ 0 & 1 & 1 & | & 2 & -1 & -3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & r_2:=r_2-\widetilde{r_3,r_1}:=r_1-3r_3 \begin{bmatrix} 1 & 3 & 0 & | & -11 & 9 & 17 \\ 0 & 1 & 0 & | & -2 & 2 & 3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} \\ & r_1:=\widetilde{r_1}-3r_2 \begin{bmatrix} 1 & 0 & 0 & | & -5 & 3 & 8 \\ 0 & 1 & 0 & | & -2 & 2 & 3 \\ 0 & 0 & 1 & | & 4 & -3 & -6 \end{bmatrix} . \\ & So \ A^{-1}= \begin{bmatrix} -5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6 \end{bmatrix} . \end{split}$$

(b) Find the coordinates of the vector (1, -1, 2) with respect to the basis *B* obtained from the column vectors of *A*.

basis *D* obtained nom the column vectors of *A*. Solution: The coordinate is $x = A^{-1} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ -5 \end{bmatrix}.$ 9. Let $H = \left\{ \begin{bmatrix} a+2b-c \\ a-b-4c \\ a+b-2c \end{bmatrix} : a, b, cany real numbers \right\}.$ a. Explain why *H* is a subspace of R^3 . Solution: $\begin{bmatrix} a+2b-c \\ a-b-4c \\ a+b-2c \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} -1 \\ -4 \\ -2 \end{bmatrix}$ So $H = Span\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ -2 \end{bmatrix} \}$ and *H* is a subspace. b. Find a set of vectors that spans H. Solution: $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-4\\-2 \end{bmatrix} \right\}$ spans the space H. c. Find a basis for H.

Solution: Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

 $r_2 := r_2 - \widetilde{r_1, r_3} := r_3 - r_1 \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & -3 \\ 0 & -1 & -1 \end{bmatrix}$
 $\widetilde{r_2} := \widetilde{r_2/(-3)} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} \widetilde{r_3} := \widetilde{r_3} + r_2 \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.
So the first two vectors are pivot vectors and $\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \}$ is a basis.

The dimension of the subspace is 2.

d. What is the dimension of the subspace? Solution: The dimension of the subspace is 2. e. Find an orthogonal basis for H. Solution: Let $u_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 2\\-1\\1\\1 \end{bmatrix}$. Then $v_1 = u_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ and $v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1}v_1$. Compute $u_2 \cdot v_1 = \begin{bmatrix} 2\\-1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = 2 - 1 + 1 = 2$ and $v_1 \cdot v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = 1 + 1 + 1 = 3$. $v_2 = \begin{bmatrix} 2\\-1\\1\\1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}\\-\frac{5}{3}\\\frac{1}{3} \end{bmatrix}$. Thus $\{v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} \frac{4}{3}\\-\frac{5}{3}\\\frac{1}{3} \end{bmatrix}\}$ ia an orthogonal basis for H. We can verify that $v_1 \cdot v_2 = 0$.

10. Determine if the following systems are consistent and if so give all

solutions in parametric vector form. (a)

Solution: The augmented matrix is $\begin{bmatrix} 1 & -2 & 3 \\ 2 & -7 & 0 \\ -5 & 8 & 5 \end{bmatrix} \sim (r_2 := r_2 - 2r_1)$ $\begin{bmatrix} 1 & -2 & 3 \\ 0 & -3 & -6 \\ -5 & 8 & 5 \end{bmatrix} \sim (r_3 := r_3 + 5r_1) \begin{bmatrix} 1 & -2 & 3 \\ 0 & -3 & -6 \\ 0 & -2 & 20 \end{bmatrix}$ $\sim (r_2 := r_2/-3, r_3 := r_3/-2) \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & -10 \end{bmatrix} \sim (r_3 := r_3 - 2)$ $\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & -10 \end{bmatrix} \sim (r_3 := r_3 - 2)$ $r_2) \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -12 \end{bmatrix}$. The last row implies that 0 = -12 which is impossible. So this system is inconsistent.

(b)

$$\sim (r_{3} := r_{3} - r_{2}) \begin{bmatrix} 1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4 \\ 1 & 2 & -3 & 0 & 5 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix} \sim (r_{1} := r_{1} - r_{3}) \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -12 \end{bmatrix}$$

$$\sim (r_{1} := r_{1} - r_{3}) \begin{bmatrix} 1 & 2 & -3 & 0 & 5 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix} \sim (r_{1} := r_{1} + 3r_{2}) \begin{bmatrix} 1 & 2 & 0 & 0 & 26 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix} .$$
So x_{2} is free. The solution is $x_{1} = 26 - 2x_{2}, x_{3} = 7, x_{4} = -47$. Its
parametric vector form is
$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{4} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 26 - 2x_{2} \\ x_{2} \\ 7 \\ -4 \end{bmatrix} = \begin{bmatrix} 26 \\ 0 \\ 7 \\ -4 \end{bmatrix} + x_{2} \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} .$$
11. Let $A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 9 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5 \end{bmatrix}$ which is row reduced to
$$\begin{bmatrix} 1 & -3 & -2 & -20 & -3 \\ 0 & 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the dimension of the nullspace of A .
(d) Find the dimension of the nullspace of A .
(e) Is
$$\begin{bmatrix} 1 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$
in the range of A ?
$$\begin{bmatrix} 0 \end{bmatrix}$$

(e) Does $Ax = \begin{bmatrix} 0\\ 3\\ 2\\ 0 \end{bmatrix}$ have any solution? Find a solution if it's solvable.

Solution: Consider the augmented matrix

1	-3	4	-2	5	1	0]
2	-6	9	-1	8	4	3
2	-6	9	-1	9	3	2
1	3	-4	2	-5	1	0

$$\begin{split} -2r_1 + r_2, & -2r_1 + r_3, r_1 + r_4 \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | 1 & | 0 \\ 0 & 0 & 1 & 3 & -2 & | 2 & | 3 \\ 0 & 0 & 1 & 3 & -1 & | 1 & | 2 \\ 0 & 0 & 0 & 0 & 0 & | 2 & | 0 \end{bmatrix} \\ & & \overbrace{-r_2 + r_3} \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | 1 & | & 0 \\ 0 & 0 & 1 & 3 & -2 & | 2 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | -1 & | -1 \\ 0 & 0 & 0 & 0 & 0 & | 2 & | & 0 \end{bmatrix} \\ & & 2r_3 + \widetilde{r_2, -5r_3} + r_1 \begin{bmatrix} 1 & -3 & 4 & -2 & 0 & | & 6 & | & 5 \\ 0 & 0 & 1 & 3 & 0 & | & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & | & 0 \end{bmatrix} \\ & & -\widetilde{4r_2 + r_1} \begin{bmatrix} 1 & -3 & 0 & -14 & 0 & | & 6 & | & 1 \\ 0 & 0 & 1 & 3 & 0 & | & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 & | & -1 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & | & 0 \end{bmatrix} . \end{split}$$

So the first, third and fifth vector forms a basis for $\operatorname{Col}(A)$, i.e.

$$e \left\{ \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix}, \begin{bmatrix} 4\\9\\9\\-4 \end{bmatrix}, \begin{bmatrix} 5\\8\\9\\-5 \end{bmatrix} \right\}$$

a of the null

is a basis for Col(A). The rank of A is 3 and the dimension of the null space is 5-3=2. $x \in Null(A)$ if $x_1 = 3x_2 = 14x_3 = 0$ $x_2 + 3x_3 = 0$ and $x_3 = 0$. So

$$x \in Null(A) \text{ if } x_1 - 3x_2 - 14x_4 = 0, \ x_3 + 3x_4 = 0 \text{ and } x_5 = 0. \text{ So}$$

$$x = \begin{bmatrix} 3x_2 + 14x_4 \\ x_2 \\ -x_4 \\ x_4 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 14 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}. \text{ Thus} \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 14 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \text{ is a basis}$$
for $NULL(A)$.

From the result of row reduction, we can see that $Ax = \begin{bmatrix} 1\\4\\3\\1 \end{bmatrix}$ is inconsistent (not solvable) and $\begin{bmatrix} 1\\4\\3\\1 \end{bmatrix}$ is not in the range of A. From the result of row reduction, we can see that $Ax = \begin{bmatrix} 0\\3\\2\\0 \end{bmatrix}$ is solvable.

12. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}, \begin{bmatrix} -4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2 \end{bmatrix}.$$

Solution: $det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = 2 - 1 = 1 \neq 0$. So the columns of the matrix form a linearly independent set.

 $\begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 3 & 6 \end{bmatrix}$. The second column vector is a multiple of the first column vector. So the columns of the matrix form a linearly dependent set.

$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix} \quad interchange \ \widetilde{first} \ and \ third \ row \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ -4 & -3 & 0 \\ 5 & 4 & 6 \end{bmatrix}$$

$$r_{3} + 4\widetilde{r_{1}, r_{4}} + (-5)r_{1} \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ 0 & -3 & 12 \\ 0 & 4 & -9 \end{bmatrix} \qquad (-1)r_{2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & -3 & 12 \\ 0 & 4 & -9 \end{bmatrix}$$

$$r_{3} + 3\widetilde{r_{2}, r_{4}} + (-4)r_{2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix} \quad interchange \ 3rd \ and \ 4th \ row, \frac{1}{7}r_{4} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

This matrix has three pivot vectors. So the columns of the matrix form a linearly independent set.

The column vectors of

$$\begin{bmatrix} -4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2 \end{bmatrix}$$

form a dependent set since we have five column vectors in \mathbb{R}^4 .