Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let A be the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.
(a) Prove that $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$.

Solution: Compute $A-\lambda I=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & 2-\lambda\end{array}\right]$ and $\operatorname{det}(A-\lambda I)=(2-\lambda)^{3}+1+1-(2-\lambda)-(2-\lambda)-(2-\lambda)=$ $8-12 \lambda+6 \lambda^{2}-\lambda^{3}+2-6+3 \lambda=-\lambda^{3}+6 \lambda^{2}-9 \lambda+4=(1-\lambda)^{2}(4-\lambda)$.
(b) Find the eigenvalues and a basis of eigenvectors for A.

Solution: Solving $-(\lambda-1)^{2}(\lambda-4)=0$, we know that the eigenvalues are 1,1 and 4 .
When $\lambda=1, A-(1) I=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \sim\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$x \in \operatorname{Null}(A-I)$ if $x_{1}+x_{2}+x_{3}=0$. So $x_{1}=-x_{2}-x_{3}$ and
$x=\left[\begin{array}{c}-x_{2}-x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. Thus $\left\{u_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], u_{2}=\right.$
$\left.\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis of eigenvectors when $\lambda=1$.
When $\lambda=4, A-4 I=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right]$ interchange r_{1} and r_{2},
$\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2\end{array}\right]$
$-2 \widetilde{r_{1}+r_{2},-r_{1}}+r_{3}\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3\end{array}\right]$
$r_{2}+\widetilde{r_{3}, r_{2} /(-3)}\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right] \widetilde{2 r_{2}+r_{1}}\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right] x \in \operatorname{Null}(A-$
4I) if $x_{1}-x_{3}=0$ and $x_{2}-x_{3}=0$. So $x=\left[\begin{array}{l}x_{3} \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Thus
$\left\{u_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ is an eigenvector when $\lambda=4$.
(c) Diagonalize the matrix A if possible.

Solution: So $\left\{u_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ is an basis for R^{3} which are eigenvectors corresponding to $\lambda=1, \lambda=1$ and $\lambda=4$. Compute
Finally, we have $A=P\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right] P^{-1}$ where $P=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
(d) Find an expression for A^{k}.

Solution: $A^{k}=P\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{k}\end{array}\right] P^{-1}$ where $P=\left[\begin{array}{ll}v_{1} & v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
Note that $1^{k}=1$.
(e) Find an expression for the matrix exponential e^{A}.

Solution: $e^{A}=P\left[\begin{array}{lll}e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e^{4}\end{array}\right] P^{-1}$ where $P=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
Note that $e^{1}=e$.
2. Let B be the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$.
(a) Find the characteristic equation of A.

Solution: $B-\lambda I=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 0 & 2-\lambda & 1 \\ 0 & 0 & 1-\lambda\end{array}\right]$.
So $\operatorname{det}(B-\lambda I)=(2-\lambda)^{2}(1-\lambda)$. The characteristic equation of A is $(2-\lambda)^{2}(1-\lambda)=0$.
(b) Find the eigenvalues and a basis of eigenvectors for B .

Solving $(2-\lambda)^{2}(1-\lambda)=0$, we know that the eigenvalues of B are $\lambda=2$ and $\lambda=1$.
When $\lambda=2$, we have
$B-\lambda I=\left[\begin{array}{ccc}2-2 & 1 & 1 \\ 0 & 2-2 & 1 \\ 0 & 0 & 1-2\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]$
$r_{2}:=r_{2}+\widetilde{r_{3}, r_{1}}:=r_{1}+r_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
The solution of $(B-2 I) x=0$ is $x_{2}=0, x_{3}=0$ and x_{1} is free. So $\operatorname{Null}(B-2 I)=\left\{\left[\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 2 is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
When $\lambda=1$, we have
$B-\lambda I=\left[\begin{array}{ccc}2-1 & 1 & 1 \\ 0 & 2-1 & 1 \\ 0 & 0 & 1-1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
$r_{1}: \widetilde{=r_{1}-} r_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
The solution of $(B-I) x=0$ is $x_{1}=0$ and $x_{2}+x_{3}=0$ So $x_{1}=0$, $x_{2}=-x_{3}$ and x_{3} is free. $\operatorname{Null}(B-I)=\left\{\left[\begin{array}{c}0 \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$.

The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is an eigenvector corresponding to eigenvalue 2 and $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue 1
(c) Diagonalize the matrix B if possible.

From (b), we know that B has only two independent eigenvectors and B is not diagonzalizable.
3. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
-4 & -5 & 5 \\
-5 & -4 & -5 \\
5 & -5 & -4
\end{array}\right]
$$

(a) Prove that $\operatorname{det}(A-\lambda I)=(9+\lambda)^{2}(6-\lambda)$. You may use the fact that $(9+\lambda)^{2}(6-\lambda)=486+27 \lambda-12 \lambda^{2}-\lambda^{3}$.
Solution: Compute $A-\lambda I=\left[\begin{array}{ccc}-4-\lambda & -5 & 5 \\ -5 & -4-\lambda & -5 \\ 5 & -5 & -4-\lambda\end{array}\right]$ and
$\operatorname{det}(A-\lambda I)$
$=(-4-\lambda)^{3}+(-5)(-5) 5+5(-5)(-5)$
$-5(-4-\lambda) 5-(-5)(-5)(-4-\lambda)-(-4-\lambda)(-5)(-5)$
$=(-4-\lambda)\left(16+8 \lambda+\lambda^{2}\right)+125+125+100+25 \lambda+100+25 \lambda+100+25 \lambda$
$=-64-32 \lambda-4 \lambda^{2}-16 \lambda-8 \lambda^{2}-\lambda^{3}+550+75 \lambda$
$=486+27 \lambda-12 \lambda^{2}-\lambda^{3}=(9+\lambda)^{2}(6-\lambda)$.
(b) Orthogonally diagonalizes the matrix A, giving an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{t}$.
Solution: Solving $\operatorname{det}(A-\lambda I)=(9+\lambda)^{2}(6-\lambda)=0$, we know that the eigenvalues are $-9,-9$ and 6 .
When $\lambda=-9, A-(-9) I=A+9 I=\left[\begin{array}{ccc}-4+9 & -5 & 5 \\ -5 & -4+9 & -5 \\ 5 & -5 & -4+9\end{array}\right]$
$=\left[\begin{array}{ccc}5 & -5 & 5 \\ -5 & 5 & -5 \\ 5 & -5 & 5\end{array}\right] \sim\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right] \sim\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$x \in \operatorname{Null}(A-I)$ if $x_{1}-x_{2}+x_{3}=0$. So $x_{1}=x_{2}-x_{3}$ and
$x=\left[\begin{array}{c}x_{2}-x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. Thus $\left\{u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], u_{2}=\right.$
$\left.\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis of eigenvectors when $\lambda=-9$.
Now we use Gram-Schmidt process to find an orthogonal basis for $\operatorname{Null}(A-(-9) I)$.
Let $v_{1}=u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $v_{2}=u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$.
Compute $u_{2} \cdot v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=-1$ and $v_{1} \cdot v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=2$.
So $v_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]-\left(\frac{-1}{2}\right)\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]+\left(\frac{1}{2}\right)\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$.
Now we can replace v_{2} by $2 v_{2}=2\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$
Hence $\left\{v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]\right\}$ is an orthogonal basis of eigenvectors when $\lambda=-9$.
When $\lambda=6, A-6 I=\left[\begin{array}{ccc}-4-6 & -5 & 5 \\ -5 & -4-6 & -5 \\ 5 & -5 & -4-6\end{array}\right] \sim\left[\begin{array}{ccc}-10 & -5 & 5 \\ -5 & -10 & -5 \\ 5 & -5 & -10\end{array}\right] \sim$
$\left[\begin{array}{ccc}-2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2\end{array}\right]$ interchange r_{1} and $r_{3},\left[\begin{array}{ccc}1 & -1 & -2 \\ -1 & -2 & -1 \\ -2 & -1 & 1\end{array}\right]$
$r_{2}: \widetilde{=r_{2}+r_{1}}\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & -3 & -3 \\ -2 & -1 & 1\end{array}\right]$
$r_{3}: \widetilde{=r_{3}+2 r_{1}}\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & -3 & -3 \\ 0 & -3 & -3\end{array}\right] r_{3}:=r_{3} \widetilde{r_{2}, r_{2}}:=r_{2} / 3\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right] \widetilde{r_{1}}: \widetilde{=r_{1}+r_{2}}[$
$x \in \operatorname{Null}(A-6 I)$ if $x_{1}-x_{3}=0$ and $x_{2}+x_{3}=0$. So $x=\left[\begin{array}{c}x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=$
$x_{3}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$. Thus $\left\{v_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$ is an eigenvector when $\lambda=6$.
So $\left\{v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right], v_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$ is an orthogonal basis
for R^{3} which are eigenvectors corresponding to $\lambda=-9, \lambda=-9$ and $\lambda=6$. Compute $\left\|v_{1}\right\|=\sqrt{2},\left\|v_{2}\right\|=\sqrt{6}$ and $\left\|v_{3}\right\|=\sqrt{3}$.
Thus $\left\{\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right], \frac{v_{2}}{\left\|v_{2}\right\|}=\left[\begin{array}{c}-\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}}\end{array}\right], \frac{v_{3}}{\left\|v_{3}\right\|}=\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]\right\}$ is an or-
thonormal basis for R^{3} which are eigenvectors corresponding to $\lambda=-9, \lambda=-9$ and $\lambda=6$.
Finally, we have $A=P\left[\begin{array}{ccc}-9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 6\end{array}\right] P^{T}$ where $P=\left[\frac{v_{1}}{\left\|v_{1}\right\|} \frac{v_{2}}{\left\|v_{2}\right\|} \frac{v_{3}}{\left\|v_{3}\right\|}\right]=$ $\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$.
(c) Write the quadratic form associated with A using variables x_{1}, x_{2}, and x_{3} ?
Solution: Recall that $A=\left[\begin{array}{ccc}-4 & -5 & 5 \\ -5 & -4 & -5 \\ 5 & -5 & -4\end{array}\right]$ and the quadratic
form in x_{1}, x_{2} and x_{3} is $Q_{A}(x)=x^{T} A x=-4 x_{1}^{2}-4 x_{2}^{2}-4 x_{3}^{2}-$ $10 x_{1} x_{2}+10 x_{1} x_{3}-10 x_{2} x_{3}$. Note that this quadratic is indefinite (b/c it's eigenvalues are $-9,-9,6$.)
(d) Find an expression for A^{k} and e^{A}.

Solution: From $A=P\left[\begin{array}{ccc}-9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 6\end{array}\right] P^{T}$ where $P=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$,
we have
$A^{k}=P\left[\begin{array}{ccc}(-9)^{k} & 0 & 0 \\ 0 & (-9)^{k} & 0 \\ 0 & 0 & 6^{k}\end{array}\right] P^{T}$ and $e^{A}=P\left[\begin{array}{ccc}e^{-9} & 0 & 0 \\ 0 & e^{-9} & 0 \\ 0 & 0 & e^{6}\end{array}\right] P^{T}$.
(e) What's $A^{5}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)$?

Solution: Recall that $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{ccc}-4 & -5 & 5 \\ -5 & -4 & -5 \\ 5 & -5 & -4\end{array}\right]$
with eigenvalue 6 , so we have $A\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=6\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$,
$A^{2}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=A\left(6\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=6 A\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=6^{2}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$. Similarly, we
get $A^{k}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=6^{k}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and $A^{5}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=6^{5}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
(f) What is $\lim _{n \rightarrow \infty} A^{-n}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)$?

Solution: We have $A^{-n}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=6^{-n}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{1}{6^{n}} \\ -\frac{1}{6^{n}} \\ \frac{1}{6^{n}}\end{array}\right]$. So $\lim _{n \rightarrow \infty} A^{-n}\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=$ $\lim _{n \rightarrow \infty}\left[\begin{array}{c}\frac{1}{6^{n}} \\ -\frac{1}{6^{n}} \\ \frac{1}{6^{n}}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
4. Classify the quadratic forms for the following quadratic forms. Make a change of variable $x=P y$, that transforms the quadratic form into one with no cross term. Also write the new quadratic form.
(a) $9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}$.

Let $Q\left(x_{1}, x_{2}\right)=9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}=x^{T}\left[\begin{array}{cc}9 & -4 \\ -4 & 3\end{array}\right] x$ and $A=$ $\left[\begin{array}{cc}9 & -4 \\ -4 & 3\end{array}\right]$. We want to orthogonally diagonalizes A.
Compute $A-\lambda I=\left[\begin{array}{cc}9-\lambda & -4 \\ -4 & 3-\lambda\end{array}\right]$ and $\operatorname{det}(A-\lambda I)=(9-\lambda)(3-$
$\lambda)-16=\lambda^{2}-12 \lambda+27-16=\lambda^{2}-12 \lambda+11=(\lambda-1)(\lambda-11)$. So $\lambda=1$ or $\lambda=11$. Since the eigenvalues of A are all positive, we know that the quadratic form is positive definite.
Now we diagonalize A.
$\lambda=1: \quad A-1 \cdot I=\left[\begin{array}{cc}9-1 & -4 \\ -4 & 3-1\end{array}\right]=\left[\begin{array}{cc}8 & -4 \\ -4 & 2\end{array}\right] \sim\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right]$. So $x \in \operatorname{Null}(A-1 \cdot I)$ iff $2 x_{1}-x_{2}=0$. So $x_{2}=2 x_{1}$ and $x=\left[\begin{array}{c}x_{1} \\ 2 x_{1}\end{array}\right]=$ $x_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=$ 1.
$\lambda=11: \quad A-11 \cdot I=\left[\begin{array}{cc}9-11 & -4 \\ -4 & 3-11\end{array}\right]=\left[\begin{array}{ll}-2 & -4 \\ -4 & -8\end{array}\right] \sim\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$.
So $x \in \operatorname{Null}(A-11 \cdot I)$ iff $x_{1}+2 x_{2}=0$. So $x_{1}=-2 x_{2}$ and $x=\left[\begin{array}{c}-2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. So $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=11$.
Now $\left\{v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$ is an orthogonal basis. Compute $\left\|v_{1}\right\|=\sqrt{5}$ and $\left\|v_{2}\right\|=\sqrt{5}$. Thus $\left\{\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right], \frac{v_{2}}{\left\|v_{2}\right\|}=\left[\begin{array}{c}\frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]\right\}$ is an orthonormal basis of eigenvectors. So we have $A=P\left[\begin{array}{cc}1 & 0 \\ 0 & 11\end{array}\right] P^{T}$ where $P=\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]$.

Now $Q(x)=x^{T} A x=x^{T} P\left[\begin{array}{cc}1 & 0 \\ 0 & 11\end{array}\right] P^{T} x=y^{T}\left[\begin{array}{cc}1 & 0 \\ 0 & 11\end{array}\right] y=y_{1}^{2}+$
$11 y_{2}^{2}$ if $y=P^{T} x$. So $P y=P P^{T} x, x=P y$ and $P=\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]$.
Note that we have used the fact that $P P^{T}=I$.
(b) $-5 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}$.

Let $Q\left(x_{1}, x_{2}\right)=-5 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}=x^{T}\left[\begin{array}{cc}-5 & 2 \\ 2 & -2\end{array}\right] x$ and $A=$ $\left[\begin{array}{cc}-5 & 2 \\ 2 & -2\end{array}\right]$. We want to orthogonally diagonalizes A.
Compute $A-\lambda I=\left[\begin{array}{cc}-5-\lambda & 2 \\ 2 & -2-\lambda\end{array}\right]$ and $\operatorname{det}(A-\lambda I)=(-5-$
$\lambda)(-2-\lambda)-4=\lambda^{2}+7 \lambda+10-4=\lambda^{2}+7 \lambda+6=(\lambda+1)(\lambda+6)$.
So $\lambda=-1$ or $\lambda=-6$. Since the eigenvalues of A are all negative, we know that the quadratic form is negative definite.
Now we diagonalize A.
$\lambda=-1: A-(-1) \cdot I=\left[\begin{array}{cc}-5-(-1) & 2 \\ 2 & -2-(-1)\end{array}\right]=\left[\begin{array}{cc}-4 & 2 \\ 2 & -1\end{array}\right] \sim\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right]$.
So $x \in \operatorname{Null}(A-1 \cdot I)$ iff $2 x_{1}-x_{2}=0$. So $x_{2}=2 x_{1}$ and $x=\left[\begin{array}{c}x_{1} \\ 2 x_{1}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=-1$.
$\lambda=-6: A-(-6) \cdot I=\left[\begin{array}{cc}-5-(-6) & 2 \\ 2 & (-2)-(-6)\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$.
So $x \in \operatorname{Null}(A-11 \cdot I)$ iff $x_{1}+2 x_{2}=0$. So $x_{1}=-2 x_{2}$ and $x=\left[\begin{array}{c}-2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. So $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=-6$.
Now $\left\{v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$ is an orthogonal basis. Compute $\left\|v_{1}\right\|=\sqrt{5}$ and $\left\|v_{2}\right\|=\sqrt{5}$. Thus $\left\{\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right], \frac{v_{2}}{\left\|v_{2}\right\|}=\left[\begin{array}{c}\frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]\right\}$ is an orthonormal basis of eigenvectors. So we have $A=P\left[\begin{array}{cc}-1 & 0 \\ 0 & -6\end{array}\right] P^{T}$
where $P=\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]$.
Now $Q(x)=x^{T} A x=x^{T} P\left[\begin{array}{cc}-1 & 0 \\ 0 & -6\end{array}\right] P^{T} x=y^{T}\left[\begin{array}{cc}-1 & 0 \\ 0 & -6\end{array}\right] y=$ $-y_{1}^{2}-6 y_{2}^{2}$ if $y=P^{T} x$. So $P y=P P^{T} x, x=P y$ and $P=$ $\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]$.
(c) $8 x_{1}^{2}+6 x_{1} x_{2}$.

Let $Q\left(x_{1}, x_{2}\right)=8 x_{1}^{2}+6 x_{1} x_{2}=x^{T}\left[\begin{array}{ll}8 & 3 \\ 3 & 0\end{array}\right] x$ and $A=\left[\begin{array}{ll}8 & 3 \\ 3 & 0\end{array}\right]$. We want to orthogonally diagonalizes A.
Compute $A-\lambda I=\left[\begin{array}{cc}8-\lambda & 3 \\ 3 & 0-\lambda\end{array}\right]$ and $\operatorname{det}(A-\lambda I)=(8-\lambda)$. $(-\lambda)-9=\lambda^{2}-8 \lambda-9=(\lambda+1)(\lambda-9)$. So $\lambda=-1$ or $\lambda=9$. Since A has positive and negative eigenvalues, we know that the quadratic form is indefinite.
Now we diagonalize A.
$\lambda=-1: A-(-1) \cdot I=\left[\begin{array}{cc}8-(-1) & 3 \\ 3 & 0-(-1)\end{array}\right]=\left[\begin{array}{ll}9 & 3 \\ 3 & 1\end{array}\right] \sim\left[\begin{array}{ll}3 & 1 \\ 0 & 0\end{array}\right]$.
So $x \in \operatorname{Null}(A-1 \cdot I)$ iff $3 x_{1}+x_{2}=0$. So $x_{2}=-3 x_{1}$ and $x=\left[\begin{array}{c}x_{1} \\ -3 x_{1}\end{array}\right]=x_{1}\left[\begin{array}{c}1 \\ -3\end{array}\right]$. So $\left[\begin{array}{c}1 \\ -3\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=-1$.
$\lambda=9: \quad A-9 \cdot I=\left[\begin{array}{cc}8-9 & 3 \\ 3 & 0-9\end{array}\right]=\left[\begin{array}{cc}-1 & 3 \\ 3 & -9\end{array}\right] \sim\left[\begin{array}{cc}1 & -3 \\ 0 & 0\end{array}\right]$. So $x \in \operatorname{Null}(A-9 \cdot I)$ iff $x_{1}-3 x_{2}=0$. So $x_{1}=3 x_{2}$ and $x=\left[\begin{array}{c}3 x_{2} \\ x_{2}\end{array}\right]=$ $x_{2}\left[\begin{array}{l}3 \\ 1\end{array}\right]$. So $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=$ 9.

Now $\left\{v_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$ is an orthogonal basis. Compute $\left\|v_{1}\right\|=\sqrt{10}$ and $\left\|v_{2}\right\|=\sqrt{10}$. Thus $\left\{\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{c}\frac{1}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}}\end{array}\right], \frac{v_{2}}{\left\|v_{2}\right\|}=\right.$
$\left.\left[\begin{array}{c}\frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}}\end{array}\right]\right\}$ is an orthonormal basis of eigenvectors. So we have $A=$
$P\left[\begin{array}{cc}-1 & 0 \\ 0 & 9\end{array}\right] P^{T}$ where $P=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]$.
Now $Q(x)=x^{T} A x=x^{T} P\left[\begin{array}{cc}-1 & 0 \\ 0 & 9\end{array}\right] P^{T} x=y^{T}\left[\begin{array}{cc}-1 & 0 \\ 0 & 9\end{array}\right] y=-y_{1}^{2}+$
$9 y_{2}^{2}$ if $y=P^{T} x$. So $P y=P P^{T} x, x=P y$ and $P\left[\begin{array}{ll}\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]$.
5. (a) Find a 3×3 matrix A which is not diagonalizable?

Solution: Let $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Then $\operatorname{det}(A-\lambda I)=-\lambda^{3}$ and the eigenvalues of A are zero.
$A-0 \cdot I=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. The eigenvector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ satisfies $x_{2}=0$ and $x_{3}=0$. The eigenvector is $x=\left[\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. So there is only one eigenvector for A and A is not diagonalizable.
(b) Give an example of a 2×2 matrix which is diagonalizable but not orthogonally diagonalizable?
Solution: Let $A=\left[\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right]$. Then $\operatorname{det}(A-\lambda I)==\left[\begin{array}{cc}1-\lambda & 4 \\ 1 & 1-\lambda\end{array}\right]=$ $(1-\lambda)^{2}-4=(1-\lambda)^{2}-2^{2}=(1-\lambda-2)(1-\lambda+2)=(-\lambda-1)(3-\lambda)$. So A has two distinct eigenvalues and A is diagonalizable. But A is not symmetric. So A is not orthogonally diagonalizable.
6. Let $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & -1\end{array}\right]$.
(a) Find the condition on $b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ such that $A x=b$ is solvable. Solution:

$$
a_{3}:=a_{3}-\widetilde{a_{2}, a_{4}}:=a_{4}-2 a_{2}\left[\begin{array}{ccc|c}
1 & 2 & 2 & b_{1} \\
0 & 1 & 2 & -b_{2}+b_{1} \\
0 & 0 & 0 & b_{3}+b_{2}-b_{1} \\
0 & 0 & -3 & b_{4}-b_{1}+2 b_{2}
\end{array}\right]
$$

$$
\widetilde{a_{3} \leftrightarrow a_{4}}\left[\begin{array}{ccc|c}
1 & 2 & 2 & b_{1} \\
0 & 1 & 2 & -b_{2}+b_{1} \\
0 & 0 & -3 & b_{4}-b_{1}+2 b_{2} \\
0 & 0 & 0 & b_{3}+b_{2}-b_{1}
\end{array}\right]
$$

From here, we can see that $A x=b$ has a solution if $b_{3}+b_{2}-b_{1}=0$.

$$
\begin{aligned}
& \text { Consider the augmented matrix }\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 2 & 2 & b_{1} \\
1 & 1 & 0 & b_{2} \\
0 & 1 & 2 & b_{3} \\
-1 & 0 & -1 & b_{4}
\end{array}\right] \\
& a_{2}: \widetilde{a_{2}+(-1) a_{1}}\left[\begin{array}{ccc|c}
1 & 2 & 2 & b_{1} \\
0 & -1 & -2 & b_{2}-b_{1} \\
0 & 1 & 2 & b_{3} \\
-1 & 0 & -1 & b_{4}
\end{array}\right] \\
& a_{4}: \widetilde{=a_{4}}+a_{1}\left[\begin{array}{ccc|c}
1 & 2 & 2 & b_{1} \\
0 & -1 & -2 & b_{2}-b_{1} \\
0 & 1 & 2 & b_{3} \\
0 & 2 & 1 & b_{4}+b_{1}
\end{array}\right] \\
& a_{2} \widetilde{:=-a_{2}}\left[\begin{array}{ccc|c}
1 & 2 & 2 \mid c c & b_{1} \\
0 & 1 & 2 & -b_{2}+b_{1} \\
0 & 1 & 2 & b_{3} \\
0 & 2 & 1 & b_{4}+b_{1}
\end{array}\right]
\end{aligned}
$$

(b) What is the column space of A ?

Solution:
The column space is the subspace spanned by the column vectors.
From the computation in (a), we know that the column vectors of
A are independent. So $\operatorname{Col}(A)=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ 2 \\ -1\end{array}\right]\right\}$
(c) Describe the subspace $\operatorname{col}(A)^{\perp}$ and find an basis for $\operatorname{col}(A)^{\perp}$.

Solution: $\operatorname{col}(A)^{\perp}=\{x \mid x \cdot y=0$ for all $y \in \operatorname{col}(A)\}$

$$
\begin{aligned}
& =\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right]=0\right.,\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1 \\
1 \\
0
\end{array}\right]=0,\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
2 \\
-1
\end{array}\right]=0\right\} \\
& =\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \right\rvert\, x_{1}+x_{2}-x_{4}=0,2 x_{1}+x_{2}+x_{3}=0,2 x_{1}+2 x_{3}-x_{4}=0\right\}
\end{aligned}
$$

$$
\text { Consider }\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
2 & 1 & 1 & 0 \\
2 & 0 & 2 & -1
\end{array}\right] r_{2}: \widetilde{=r_{2}-2 r_{1}}\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & -1 & 1 & 2 \\
2 & 0 & 2 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& r_{3}: \widetilde{=r_{3}-2 r_{1}}\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & -1 & 1 & 2 \\
0 & -2 & 2 & 1
\end{array}\right] r_{2} \widetilde{:=-r_{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 1 & -1 & -2 \\
0 & -2 & 2 & 1
\end{array}\right] \\
& r_{3}: \widetilde{=r_{3}+2 r_{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & -3
\end{array}\right] r_{1}: \widetilde{=r_{1}-r_{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & -3
\end{array}\right]
\end{aligned}
$$

$\left.r_{3}: \widetilde{=r_{3} /(}-3\right)\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right] r_{1}:=r_{1}-\widetilde{r_{3}, r_{2}}:=r_{2}+2 r_{3}\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
So $x_{1}+x_{3}=0, x_{2}-x_{3}=0$ and $x_{4}=0, x_{3}$ is free. This implies that
$x_{1}=-x_{3}, x_{2}=x_{3}, x_{4}=0$ and $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-x_{3} \\ x_{3} \\ x_{3} \\ 0\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 0\end{array}\right]$.
Hence $\operatorname{col}(A)^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for $\operatorname{col}(A)^{\perp}$.
The dimension of $\operatorname{col}(A)^{\perp}$ is 1 .
(d) Use Gram-Schmidt process to find an orthogonal basis for the column of the matrix A.
Solution:
Let $w_{1}=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right], w_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]$ and $w_{3}=\left[\begin{array}{c}2 \\ 0 \\ 2 \\ -1\end{array}\right]$.
Gram-Schmidt process is
$v_{1}=w_{1}, v_{2}=w_{2}-\frac{w_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$ and $v_{3}=w_{3}-\frac{w_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{w_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$.
So $v_{1}=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]$. Compute $w_{2} \cdot v_{1}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]=3, v_{1} \cdot v_{1}=$ $\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]=3$ and $v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]-\frac{3}{3}\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$.
Compute $w_{3} \cdot v_{1}=\left[\begin{array}{c}2 \\ 0 \\ 2 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]=3, w_{3} \cdot v_{2}=\left[\begin{array}{c}2 \\ 0 \\ 2 \\ -1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]=3$, $v_{2} \cdot v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]=3$ and
$v_{3}=w_{3}-\frac{w_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{w_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=\left[\begin{array}{c}2 \\ 0 \\ 2 \\ -1\end{array}\right]-\frac{3}{3}\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]-\frac{3}{3}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$
$=\left[\begin{array}{c}2-1-1 \\ 0-1-0 \\ 2-0-1 \\ -1+1-1\end{array}\right]=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right]$. Hence $\left\{\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right]\right\}$ is an orthog-
onal basis for $\operatorname{Col}(A)$.
(e) Find an orthonormal basis for the column of the matrix A.

Solution:
Note that $\left\|v_{1}\right\|=\sqrt{v_{1} \cdot v_{1}}=\sqrt{3},\left\|v_{2}\right\|=\sqrt{v_{2} \cdot v_{2}}=\sqrt{3}$ and
$\left\|v_{3}\right\|=\sqrt{v_{3} \cdot v_{3}}=\sqrt{3}$. Hence $\left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|}\right\}=\left\{\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 0 \\ -\frac{1}{\sqrt{3}}\end{array}\right],\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right],\left[\begin{array}{c}0 \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}}\end{array}\right]\right\}$
is an orthonormal basis for $\operatorname{Col}(A)$.
(f) Find the orthogonal projection of $y=\left[\begin{array}{c}7 \\ 3 \\ 10 \\ -2\end{array}\right]$ onto the column space of A and write $y=\widehat{y}+z$ where $\widehat{y} \in \operatorname{col}(A)$ and $z \in \operatorname{col}(A)^{\perp}$. Also find the shortest distance from y to $\operatorname{Col}(A)$.
Solution: Since $\left\{v_{1}=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right]\right\}$ is an orthogonal basis for $\operatorname{Col}(A), y=\widehat{y}+z$ where $\widehat{y}=\frac{y \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+$ $\frac{y \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}+\frac{y \cdot v_{3}}{v_{3} \cdot v_{3}} v_{3} \in \operatorname{Col}(A)$ and $z=y-\widehat{y} \in \operatorname{Col}(A)^{\perp}$. Compute $y \cdot v_{1}=\left[\begin{array}{c}v_{7} \\ 3 \\ 10 \\ -2\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]=7+3+0+2=12, v_{1} \cdot v_{1}=\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]=$ $1+1+1=3, y \cdot v_{2}=\left[\begin{array}{c}7 \\ 3 \\ 10 \\ -2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]=7+0+10-2=15$, $v_{2} \cdot v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]=3$,
$y \cdot v_{3}=\left[\begin{array}{c}7 \\ 3 \\ 10 \\ -2\end{array}\right] \cdot\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right]=0-3+10+2=9, v_{3} \cdot v_{3}=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right]=3$.
So $\widehat{y}=\frac{12}{3}\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right]+\frac{(15)}{3}\left[\begin{array}{c}1 \\ 0 \\ 1 \\ 1\end{array}\right]+\frac{9}{3}\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}4+5+0 \\ 4+0-3 \\ 0+5+3 \\ -4+5-3\end{array}\right]=\left[\begin{array}{c}9 \\ 1 \\ 8 \\ -2\end{array}\right]$ and
$z=y-\widehat{y}=\left[\begin{array}{c}7 \\ 3 \\ 10 \\ -2\end{array}\right]-\left[\begin{array}{c}9 \\ 1 \\ 8 \\ -2\end{array}\right]=\left[\begin{array}{c}2 \\ -2 \\ 2 \\ 0\end{array}\right]$. Note that $z \in \operatorname{Col}(A)^{\perp}=$ $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}$.
The shortest distance from y to $\operatorname{Col}(A)=\|y-\widehat{y}\|=\|z\|=$

$$
\sqrt{(2)^{2}+(-2)^{2}+(2)^{2}+(0)^{2}}=\sqrt{12}
$$

(g) Using previous result to explain why $A x=y$ has no solution. Solution: Since the orthogonal projection of y to $\operatorname{Col}(A)$ is not y, this implies that y is not in $\operatorname{Col}(A)$. So $A x=y$ has no solution.
(h) Use orthogonal projection to find the least square solution of $A x=$ y.
Solution: The least square solution of $A x=y$ is the solution of $A x=\widehat{y}=\left[\begin{array}{c}9 \\ 1 \\ 8 \\ -2\end{array}\right]$ where \widehat{y} is the orthogonal projection of y onto the column space of A (from part (f), we know $\widehat{y}=\left[\begin{array}{c}9 \\ 1 \\ 8 \\ -2\end{array}\right]$.)
Consider the augmented matrix

$$
\begin{aligned}
& {[A \widehat{y}]=\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
1 & 1 & 0 & 1 \\
0 & 1 & 2 & 8 \\
-1 & 0 & -1 & -2
\end{array}\right] r_{2}:=r_{2}-\widetilde{r_{1}, r_{3}}:=r_{3}+r_{1}\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
0 & 1 & 2 & 8 \\
0 & 2 & 1 & 7
\end{array}\right]} \\
& r_{3}:=r_{3}+\widetilde{r_{2}, r_{4}}:=r_{4}+r_{1}\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
0 & 0 & 0 & 0 \\
0 & 0 & -3 & -9
\end{array}\right] \\
& r_{2}:=-r_{2}, r_{4}: \widetilde{=r_{4}} /(-3), r_{3} \leftrightarrow r_{4}\left[\begin{array}{lll|l}
1 & 2 & 2 & 9 \\
0 & 1 & 2 & 8 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& r_{2}:=r_{2}-\widetilde{2 r_{3}, r_{1}}:=r_{1}-2 r_{3}\left[\begin{array}{ccc|c}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$r_{1}: \widetilde{=r_{1}-2 r_{2}}\left[\begin{array}{ccc|c}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So $x_{1}=-1, x_{2}=2, x_{3}=3$ and the least square solution of $A x=y$ is $x=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$.
(i) Use normal equation to find the least square solution of $A x=y$.

Solution: The normal equation is $A^{T} A x=A^{T} y$. Compute $A^{T} A=$
$\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}3 & 3 & 3 \\ 3 & 6 & 6 \\ 3 & 6 & 9\end{array}\right]$
and $A^{T} y=\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 2 & 0 & 2 & -1\end{array}\right]\left[\begin{array}{c}7 \\ 3 \\ 10 \\ -2\end{array}\right]=\left[\begin{array}{c}12 \\ 27 \\ 36\end{array}\right]$.
So the normal equation $A^{T} A x=A^{T} y$ is
$\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & 6 & 6 \\ 3 & 6 & 9\end{array}\right] x=\left[\begin{array}{l}12 \\ 27 \\ 36\end{array}\right]$.

Consider the augmented matrix $\left[\begin{array}{ccc|c}3 & 3 & 3 & 12 \\ 3 & 6 & 6 & 27 \\ 3 & 6 & 9 \mid & 36\end{array}\right] \sim$
$r_{2}:=r_{2}-r_{1}, r_{3}:=r_{3}-r_{1}\left[\begin{array}{ccc|c}3 & 3 & 3 \mid 12 \\ 0 & 3 & 3 \mid 15 \\ 0 & 3 & 6 \mid 24\end{array}\right]$

$$
\begin{aligned}
& \sim r_{3}:=r_{3}-r_{2}\left[\begin{array}{lll|l}
3 & 3 & 3 & 12 \\
0 & 3 & 3 & 15 \\
0 & 0 & 3 & 9
\end{array}\right] \sim r_{1}:=r_{1} / 3, r_{2}:=r_{2} / 3, r_{3}:= \\
& r_{3} / 3\left[\begin{array}{lll}
1 & 1 & 1 \mid 4 \\
0 & 1 & 1| | \\
0 & 0 & 1 \mid
\end{array}\right]
\end{aligned}
$$

$$
\sim r_{2}:=r_{2}-r_{3}, r_{1}:=r_{1}-r_{3}\left[\begin{array}{ccc|c}
1 & 1 & 0 \mid 1 \\
0 & 1 & 0 \mid & 2 \\
0 & 0 & 1| |
\end{array}\right]
$$

$$
\sim r_{1}:=r_{1}-r_{2},\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

So $x_{1}=-1, x_{2}=2, x_{3}=3$ and the least square solution of

$$
A x=y \text { is } x=\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right] .
$$

7. Find the equation $y=a+m x$ of the least square line that best fits the given data points. $(0,1),(1,1),(3,2)$.
Solution: We try to solve the equations $1=a, 1=a+m, 2=a+3 m$, that is,
$a=1, a+m=1$ and $a+3 m=2$. It corresponding to the linear system $\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{c}a \\ m\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
Let $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3\end{array}\right]$. We solve the normal equation $A^{T} A\left[\begin{array}{c}a \\ m\end{array}\right]=A^{T}\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.

Compute $A^{T} A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}3 & 4 \\ 4 & 10\end{array}\right]$ and
$A^{T}\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}4 \\ 7\end{array}\right]$.
Consider the augmented matrix
$\left[\begin{array}{cc|c}3 & 4 & 4 \\ 4 & 10 & 7\end{array}\right] \sim r_{2}:=r_{2}-\frac{4}{3} r_{1}\left[\begin{array}{cc|c}3 & 4 & 4 \\ 0 & \frac{14}{3} & \frac{5}{3}\end{array}\right]$
$\sim r_{2}:=\frac{3}{14} r_{2}\left[\begin{array}{cc|c}3 & 4 & 4 \\ 0 & 1 & \frac{5}{14}\end{array}\right] \sim r_{1}:=r_{1}-4 r_{2}\left[\begin{array}{cc|c}3 & 0 & \frac{18}{7} \\ 0 & 1 & \frac{5}{14}\end{array}\right]$
$\sim r_{1}:=r_{1} / 3\left[\begin{array}{cc|c}1 & 0 & \frac{6}{7} \\ 0 & 1 & \frac{5}{14}\end{array}\right]$
So the least square solution is $a=\frac{6}{7}$ and $m=\frac{5}{14}$. The equation $y=\frac{6}{7}+\frac{5}{14} x$ is the least square line that best fits the given data points. $(0,1),(1,1),(3,2)$.
8. (a) Let $A=\left[\begin{array}{lll}3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4\end{array}\right]$. Find the inverse matrix of A if possible.

Solution: Consider the augmented matrix $[A I]=\left[\begin{array}{ccc|ccc}3 & 6 & 7 \mid 1 & 0 & 0 \\ 0 & 2 & 1 \mid 0 & 1 & 0 \\ 2 & 3 & 4 \mid 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& r_{1}: \widetilde{=r_{1}-r_{3}}\left[\begin{array}{ccc|ccc}
1 & 3 & 3 \mid & 1 & 0 & -1 \\
0 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 0 & 0 & 1
\end{array}\right] \\
& \begin{array}{l}
r_{3}: \widetilde{=r_{3}-2 r_{1}}\left[\begin{array}{ccc|ccc}
1 & 3 & 3 & 1 & 0 & -1 \\
0 & 2 & 1 & 0 & 1 & 0 \\
0 & -3 & -2 & -2 & 0 & 3
\end{array}\right] \\
r_{2}: \widetilde{=r_{2}}+r_{3}\left[\begin{array}{ccc|ccc}
1 & 3 & 3 & 1 & 0 & -1 \\
0 & -1 & -1 \mid & -2 & 1 & 3 \\
0 & -3 & -2 & -2 & 0 & 3
\end{array}\right] \widetilde{r_{2}:=-r_{2}}\left[\begin{array}{ccc|ccc}
1 & 3 & 3 & 1 & 0 & -1 \\
0 & 1 & 1 & 2 & -1 & -3 \\
0 & -3 & -2 \mid & -2 & 0 & 3
\end{array}\right]
\end{array}
\end{aligned}
$$

$r_{3}: \widetilde{=r_{3}+3 r_{2}}\left[\begin{array}{ccc|ccc}1 & 3 & 3 & 1 & 0 & -1 \\ 0 & 1 & 1 & 2 & -1 & -3 \\ 0 & 0 & 1 & 4 & -3 & -6\end{array}\right]$
$r_{2}:=r_{2}-\widetilde{r_{3}, r_{1}}:=r_{1}-3 r_{3}\left[\begin{array}{ccc|ccc}1 & 3 & 0 & -11 & 9 & 17 \\ 0 & 1 & 0 & -2 & 2 & 3 \\ 0 & 0 & 1 & 4 & -3 & -6\end{array}\right]$
$r_{1}: \widetilde{=r_{1}-3 r_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -5 & 3 & 8 \\ 0 & 1 & 0 & -2 & 2 & 3 \\ 0 & 0 & 1 & 4 & -3 & -6\end{array}\right]$.
So $A^{-1}=\left[\begin{array}{ccc}-5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6\end{array}\right]$.
(b) Find the coordinates of the vector $(1,-1,2)$ with respect to the basis B obtained from the column vectors of A.
Solution: The coordinate is $x=A^{-1}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{ccc}-5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]=$
$\left[\begin{array}{c}8 \\ 2 \\ -5\end{array}\right]$.
9. Let $H=\left\{\left[\begin{array}{l}a+2 b-c \\ a-b-4 c \\ a+b-2 c\end{array}\right]: a, b, c\right.$ any real numbers $\}$.
a. Explain why H is a a subspace of R^{3}.

Solution: $\left[\begin{array}{l}a+2 b-c \\ a-b-4 c \\ a+b-2 c\end{array}\right]=a\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+b\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]+c\left[\begin{array}{l}-1 \\ -4 \\ -2\end{array}\right]$
So $H=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -4 \\ -2\end{array}\right]\right\}$ and H is a subspace.
b. Find a set of vectors that spans H.

Solution: $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -4 \\ -2\end{array}\right]\right\}$ spans the space H.
c. Find a basis for H.

Solution: Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & -1 & -4 \\ 1 & 1 & -2\end{array}\right]$
$r_{2}:=r_{2}-\widetilde{r_{1}, r_{3}}:=r_{3}-r_{1}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -3 & -3 \\ 0 & -1 & -1\end{array}\right]$
$r_{2}: \widetilde{=r_{2} /(-3)}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1\end{array}\right] r_{3}: \widetilde{=r_{3}+r_{2}}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
So the first two vectors are pivot vectors and $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis. The dimension of the subspace is 2 .
d. What is the dimension of the subspace?

Solution:The dimension of the subspace is 2 .
e. Find an orthogonal basis for H.

Solution: Let $u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$.
Then $v_{1}=u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=u_{2}-\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$. Compute $u_{2} \cdot v_{1}=$
$\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=2-1+1=2$ and $v_{1} \cdot v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=1+1+1=3$.
$v_{2}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]-\frac{2}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{4}{3} \\ -\frac{5}{3} \\ \frac{1}{3}\end{array}\right]$. Thus $\left\{v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}\frac{4}{3} \\ -\frac{5}{3} \\ \frac{1}{3}\end{array}\right]\right\}$ ia an orthogonal basis for H. We can verify that $v_{1} \cdot v_{2}=0$.
10. Determine if the following systems are consistent and if so give all
solutions in parametric vector form.
(a)

$$
\begin{aligned}
& x_{1}-2 x_{2}=3 \\
& 2 x_{1}-7 x_{2}=0 \\
& -5 x_{1}+8 x_{2}=5
\end{aligned}
$$

Solution: The augmented matrix is $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & -7 & 0 \\ -5 & 8 & 5\end{array}\right] \sim\left(r_{2}:=r_{2}-2 r_{1}\right)$
$\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -3 & -6 \\ -5 & 8 & 5\end{array}\right] \sim\left(r_{3}:=r_{3}+5 r_{1}\right)\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -3 & -6 \\ 0 & -2 & 20\end{array}\right]$
$\sim\left(r_{2}:=r_{2} /-3, r_{3}:=r_{3} /-2\right)\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & -10\end{array}\right] \sim\left(r_{3}:=r_{3}-\right.$
$\left.r_{2}\right)\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -12\end{array}\right]$. The last row implies that $0=-12$ which is
impossible. So this system is inconsistent.
(b)

$$
\begin{array}{lllll}
x_{1} & +2 x_{2} & -3 x_{3} & +x_{4}=1 \\
-x_{1} & -2 x_{2} & +4 x_{3} & -x_{4}=6 \\
-2 x_{1} & -4 x_{2} & +7 x_{3} & -x_{4}=1
\end{array}
$$

The augmented matrix is $\left[\begin{array}{ccccc}1 & 2 & -3 & 1 & 1 \\ -1 & -2 & 4 & -1 & 6 \\ -2 & -4 & 7 & -1 & 1\end{array}\right] \sim\left(r_{2}:=r_{2}+r_{1}\right)$ $\left[\begin{array}{ccccc}1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ -2 & -4 & 7 & -1 & 1\end{array}\right] \sim\left(r_{3}:=r_{3}+2 r_{1}\right)\left[\begin{array}{ccccc}1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 3\end{array}\right]$
$\sim\left(r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{ccccc}1 & 2 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4\end{array}\right] \sim\left(r_{1}:=r_{1}-r_{3}\right)\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -12\end{array}\right]$
$\sim\left(r_{1}:=r_{1}-r_{3}\right)\left[\begin{array}{ccccc}1 & 2 & -3 & 0 & 5 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4\end{array}\right] \sim\left(r_{1}:=r_{1}+3 r_{2}\right)\left[\begin{array}{ccccc}1 & 2 & 0 & 0 & 26 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & -4\end{array}\right]$.
So x_{2} is free. The solution is $x_{1}=26-2 x_{2}, x_{3}=7, x_{4}=-47$. Its parametric vector form is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{4} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}26-2 x_{2} \\ x_{2} \\ 7 \\ -4\end{array}\right]=\left[\begin{array}{c}26 \\ 0 \\ 7 \\ -4\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$.
11. Let $A=\left[\begin{array}{ccccc}1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5\end{array}\right]$ which is row reduced to $\left[\begin{array}{ccccc}1 & -3 & -2 & -20 & -3 \\ 0 & 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the rank of the matrix A
(d) Find the dimension of the nullspace of A.
(e) Is $\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 1\end{array}\right]$ in the range of A ?
(e) Does $A x=\left[\begin{array}{l}0 \\ 3 \\ 2 \\ 0\end{array}\right]$ have any solution? Find a solution if it's solvable.

Solution: Consider the augmented matrix $\left[\begin{array}{ccccc|c|c}1 & -3 & 4 & -2 & 5 & 1 \mid & 0 \\ 2 & -6 & 9 & -1 & 8 & \mid & 4 \\ 2 & -6 & 9 & -1 & 9 & 3 & 2 \\ -1 & 3 & -4 & 2 & -5 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& -2 r_{1}+r_{2}, \widetilde{-2 r_{1}}+r_{3}, r_{1}+r_{4}\left[\begin{array}{ccccc|c|c}
1 & -3 & 4 & -2 & 5 & 1 & 0 \\
0 & 0 & 1 & 3 & -2 & 2 & 3 \\
0 & 0 & 1 & 3 & -1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 2 & 0
\end{array}\right] \\
& \widetilde{-r_{2}+r_{3}}\left[\begin{array}{ccccc|c|c}
1 & -3 & 4 & -2 & 5 & 1 & 0 \\
0 & 0 & 1 & 3 & -2 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 2 & 0
\end{array}\right] \\
& 2 r_{3}+\widetilde{r_{2},-5} r_{3}+r_{1}\left[\begin{array}{ccccc|c|c}
1 & -3 & 4 & -2 & 0 & 6 & 5 \\
0 & 0 & 1 & 3 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 2 & 0
\end{array}\right] \\
& \widetilde{4 r_{2}+r_{1}}\left[\begin{array}{ccccc|c|c}
1 & -3 & 0 & -14 & 0 & 6 & 1 \\
0 & 0 & 1 & 3 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 2 & 0
\end{array}\right] .
\end{aligned}
$$

So the first, third and fifth vector forms a basis for $\operatorname{Col}(A)$, i.e $\left\{\left[\begin{array}{c}1 \\ 2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}4 \\ 9 \\ 9 \\ -4\end{array}\right],\left[\begin{array}{c}5 \\ 8 \\ 9 \\ -5\end{array}\right]\right.$ is a basis for $\operatorname{Col}(\mathrm{A})$. The rank of A is 3 and the dimension of the null space is $5-3=2$.
$x \in \operatorname{Null}(A)$ if $x_{1}-3 x_{2}-14 x_{4}=0, x_{3}+3 x_{4}=0$ and $x_{5}=0$. So $x=\left[\begin{array}{c}3 x_{2}+14 x_{4} \\ x_{2} \\ -x_{4} \\ x_{4} \\ 0\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}14 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]$. Thus $\left\{\begin{array}{l}3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}14 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]$ is a basis
for $N U L(A)$.

From the result of row reduction, we can see that $A x=\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 1\end{array}\right]$ is inconsistent (not solvable) and $\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 1\end{array}\right]$ is not in the range of A.
From the result of row reduction, we can see that $A x=\left[\begin{array}{l}0 \\ 3 \\ 2 \\ 0\end{array}\right]$ is solvable.
12. Determine if the columns of the matrix form a linearly independent set. Justify your answer.
$\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right],\left[\begin{array}{cc}1 & -2 \\ -2 & 4 \\ 3 & 6\end{array}\right],\left[\begin{array}{ccc}-4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6\end{array}\right],\left[\begin{array}{ccccc}-4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2\end{array}\right]$.
Solution: $\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=2-1=1 \neq 0$. So the columns of the matrix form a linearly independent set.
$\left[\begin{array}{cc}1 & -2 \\ -2 & 4 \\ 3 & 6\end{array}\right]$. The second column vector is a multiple of the first column vector. So the columns of the matrix form a linearly dependent set.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right] \quad \text { interchange } \widetilde{\text { first }} \text { and third row }\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 4 \\
-4 & -3 & 0 \\
5 & 4 & 6
\end{array}\right]} \\
& r_{3}+4 r_{1}, r_{4}+(-5) r_{1}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 4 \\
0 & -3 & 12 \\
0 & 4 & -9
\end{array}\right] \quad \widetilde{(-1) r_{2}}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -4 \\
0 & -3 & 12 \\
0 & 4 & -9
\end{array}\right] \\
& r_{3}+3 r_{2}, r_{4}+(-4) r_{2}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -4 \\
0 & 0 & 0 \\
0 & 0 & 7
\end{array}\right] \\
& \text { interchange 3rd and 4th row, } \frac{1}{7} r_{4}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This matrix has three pivot vectors. So the columns of the matrix form a linearly independent set.
The column vectors of

$$
\left[\begin{array}{ccccc}
-4 & -3 & 1 & 5 & 1 \\
2 & -1 & 4 & -1 & 2 \\
1 & 2 & 3 & 6 & -3 \\
5 & 4 & 6 & -3 & 2
\end{array}\right]
$$

form a dependent set since we have five column vectors in R^{4}.

