Notes for section 1.1 Jan 14, 2009
In the following, we use the following notations:
a. r_{1} denotes the first row of the matrix, r_{2} denotes the second row of the matrix and r_{3} denotes the third row of the matrix.
b. $r_{i}:=c r_{j}+r_{i}$ This means that we replace the i-th row of the matrix by adding c times the j-th row to i-th row of the matrix.
$r_{i}:=c r_{i}$ This means that we replace the i-th row of the matrix by multiplying c times the i-th row to the i-th row of the matrix.
$r_{i} \leftrightarrow r_{j}$ This means that we interchange the i-th row and the j-th row.

1. Use elementary row operations to solve the following linear system.
$x_{1}+5 x_{2}+2 x_{3}=1$
$-2 x_{1}-8 x_{2}+2 x_{3}=12$
$x_{1}+3 x_{2}-3 x_{3}=-9$

Solution: Our goal is to eliminate as many variables as possible for each equation.

The augmented matrix of the above system is
$\left[\begin{array}{cccc}1 & 5 & 2 & 1 \\ -2 & -8 & 2 & 12 \\ 1 & 3 & -3 & -9\end{array}\right]$.
First, we use first row to eliminate the x_{1} variable in equation 2 and equation 3 by (a) replacing the second row of the matrix by multiplying 2 times the first row to the second row of the matrix so we can cancel the coefficient of the x_{1} variable in the second equation
(b) replacing third row of the matrix by multiplying -1 times first row to the third row of the matrix so we can cancel the coefficient of the x_{1} variable in the third equation

$$
\begin{aligned}
& 2 r_{1} \mapsto\left[\begin{array}{cccc}
1 & 5 & 2 & 1 \\
(2 & 10 & 4 & 2) \\
-2 & -8 & 2 & 12 \\
(-1 & -5 & -2 & -1) \\
1 & 3 & -3 & -9
\end{array}\right] \\
& r_{2}:=2 r_{1}+\widetilde{r_{2}, r_{3}:=(-1) r_{1}+r_{3}} \begin{array}{cc}
2 r_{1}+r_{2} \mapsto \\
(-1) r_{1}+r_{3} \mapsto
\end{array}\left[\begin{array}{cccc}
1 & 5 & 2 & 1 \\
0 & 2 & 6 & 14 \\
0 & -2 & -5 & -10
\end{array}\right]
\end{aligned}
$$

Next, we use second row to eliminate the x_{2} variable in equation 3 $r_{3}: \widetilde{=r_{2}+r_{3}} r_{2}+r_{3} \mapsto\left[\begin{array}{cccc}1 & 5 & 2 & 1 \\ 0 & 2 & 6 & 14 \\ 0 & 0 & 1 & 4\end{array}\right]$ Now the third row tells us that $x_{3}=4$.
Next, we use third row to eliminate the x_{3} variable in equation 1 and equation 2
$-2 r_{3} \mapsto\left[\begin{array}{cccc}1 & 5 & 2 & 1 \\ (0 & 0 & -2 & -8) \\ 0 & 2 & 6 & 14 \\ (0 & 0 & -6 & -24) \\ 0 & 0 & 1 & 4\end{array}\right]$
$r_{1}:=-2 r_{3}+\widetilde{r_{1}, r_{2}}:=-6 r_{3}+r_{2} \quad \begin{array}{ll}-2 r_{3}+r_{1} & -6 r_{3}+r_{2} \mapsto\end{array}\left[\begin{array}{cccc}1 & 5 & 0 & -7 \\ 0 & 2 & 0 & -10 \\ 0 & 0 & 1 & 4\end{array}\right]$
Next multiply $\frac{1}{2}$ to the second row to get
$\widetilde{r_{2}:=\frac{1}{2} r_{2}} \quad \frac{1}{2} r_{2} \mapsto\left[\begin{array}{cccc}1 & 5 & 0 & -7 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 4\end{array}\right]$
Next use the second row to eliminate the x_{2} variable in the first equation.

$$
\begin{aligned}
& -5 r_{2} \mapsto\left[\begin{array}{cccc}
1 & 5 & 0 & -7 \\
(0 & -5 & 0 & 25) \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 4
\end{array}\right] \\
& r_{1}:=-5 r_{2}+r_{1} \\
& -5 r_{2}+r_{1} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 18 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 4
\end{array}\right]
\end{aligned}
$$

So we have $x_{1}=18, x_{2}=-5$ and $x_{3}=4$
2. Use elementary row operations to solve the following linear system.

$$
\begin{aligned}
& -3 x_{2}+5 x_{3}=1 \\
& 2 x_{1}-7 x_{2}+3 x_{3}=-2 \\
& x_{1}-5 x_{2}+4 x_{3}=-3
\end{aligned}
$$

Solution:

The augmented matrix of the above system is

$$
\left[\begin{array}{cccc}
0 & -3 & 5 & 1 \\
2 & -7 & 3 & -2 \\
1 & -5 & 4 & -3
\end{array}\right] .
$$

There is no x_{1} variable in the first variable. So we interchange the first row and third row. The coefficient of x_{1} is 1 in the third row. The coefficient of x_{1} is 2 in the second row. So we choose the third row

$$
\begin{aligned}
& \text { instead of the second row. } \\
& {\left[\begin{array}{cccc}
0 & -3 & 5 & 1 \\
2 & -7 & 3 & -2 \\
1 & -5 & 4 & -3
\end{array}\right] \widetilde{r_{1} \leftrightarrow r_{3}}\left[\begin{array}{cccc}
1 & -5 & 4 & -3 \\
2 & -7 & 3 & -2 \\
0 & -3 & 5 & 1
\end{array}\right]}
\end{aligned}
$$

Now we use first row to eliminate the x_{1} variable in equation 2

$$
\begin{aligned}
& -2 r_{1} \mapsto\left[\begin{array}{cccc}
1 & -5 & 4 & -3 \\
(-2 & 10 & -8 & 6 \\
2 & -7 & 3 & -2 \\
0 & -3 & 5 & 1
\end{array}\right] \\
& r_{2}:=-2 r_{2}+r \\
& -2 r_{2}+r_{1} \mapsto\left[\begin{array}{cccc}
1 & -5 & 4 & -3 \\
0 & 3 & -5 & 3 \\
0 & -3 & 5 & 1
\end{array}\right]
\end{aligned}
$$

Now we use second row to eliminate the x_{2} variable in equation 3

$$
\begin{aligned}
& r_{3}:=r_{2}+r_{3} \\
& \\
& r_{2}+r_{3} \mapsto\left[\begin{array}{cccc}
1 & -5 & 4 & -3 \\
0 & 3 & -5 & 3 \\
0 & 0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

Now the third row implies that $0=4$ which is impossible. So this linear system is inconsistent (no solution.)
3. Find an equation involving a, band c that makes the following augmented matrix corresponding to a consistent system.
$\left[\begin{array}{llll}1 & 1 & 1 & a \\ 1 & 2 & 2 & b \\ 2 & 5 & 5 & c\end{array}\right]$.
Solution: First, we we use first row to eliminate the x_{1} variable in second and third equation.

$$
-r_{1} \mapsto\left[\begin{array}{cccc}
1 & 1 & 1 & a \\
(-1 & -1 & -1 & -a) \\
1 & 2 & 2 & b \\
(-2 & -2 & -2 & -2 a) \\
2 & 5 & 5 & c
\end{array}\right]
$$

$r_{2}:=-r_{1}+\widetilde{r_{2}, r_{3}}:=-2 r_{1}+r_{3} \begin{array}{ll} & -r_{1}+r_{2} \mapsto\left[\begin{array}{cccc}1 & 1 & 1 & a \\ 0 & 1 & 1 & b-a \\ 0 & 3 & 3 & c-2 a\end{array}\right]\end{array}$
Now we use second row to eliminate the x_{2} variable in equation 3

$$
\begin{aligned}
& -3 r_{1} \mapsto\left[\begin{array}{cccc}
1 & 1 & 1 & a \\
0 & 1 & 1 & b-a \\
(0 & -3 & -3 & -3 b+3 a) \\
0 & 3 & 3 & c-2 a
\end{array}\right] \\
& r_{3}:=-3 r_{2}+r_{3} \text { 㭲 } \\
& -3 r_{1}+r_{3} \mapsto\left[\begin{array}{cccc}
1 & 1 & 1 & a \\
0 & 1 & 1 & b-a \\
0 & 0 & 0 & c-2 a-3 b+3 a
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & a \\
0 & 1 & 1 & b-a \\
0 & 0 & 0 & a-3 b+c
\end{array}\right]
\end{aligned}
$$

Now the third row implies that $0=a-3 b+c$. This system is consistent only if $a-3 b+c=0$. Assume $a-3 b+c=0$. The augmented matrix can be written as $\left[\begin{array}{cccc}1 & 1 & 1 & a \\ 0 & 1 & 1 & b-a \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
-r_{2} \mapsto\left[\begin{array}{cccc}
1 & 1 & 1 & a \\
(0 & -1 & -1 & -b+a) \\
0 & 1 & 1 & b-a \\
0 & 0 & 0 & 0
\end{array}\right] \quad r_{1}: \widetilde{=-r_{2}+r_{1}} \quad-r_{2}+r_{1} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & -b+2 a \\
0 & 1 & 1 & b-a \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So we have $x_{1}=-b+2 a, x_{2}+x_{3}=b-a$. This implies that $x_{1}=-b+2 a$, $x_{2}=b-a-x_{3}$ and x_{3} is arbitrary. Therefore this system is consistent if $a-3 b+c=0$.

