1.5 Solution Sets of Linear System 1

Definition 1 A system of linear equations is called homogeneous if it's of the form Ax = 0 where A is a $m \times n$ matrix and x is a $n \times 1$ vector ad 0 is the zero vector in \mathbb{R}^m .

Remark: Ax = 0 always has at least one trivial solution, i.e. x = 0 (the zero vector in \mathbb{R}^n). For a given homogeneous equation, we are more interested in the nontrivial solution.

The following Theorem is obvious.

Theorem 1 The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation has at least one free variable.

Let's look at the following examples.

Example 1 Determine whether the following equation has a nontrivial solution.

(A)

$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0\\ x_1 + 3x_2 + 3x_3 = 0\\ x_1 + 2x_2 + 3x_3 = 0. \end{cases}$$
(1)
(B) $Ax = 0$ where $A = \begin{bmatrix} 1 & 1 & -1\\ 2 & 1 & -3\\ 4 & 3 & -5 \end{bmatrix}$

Solution: 1⁰ The augmented matrix for (A) is $\begin{bmatrix} 1 & 2 & 2 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 2 & 3 & 0 \end{bmatrix}$. It is row equivalent to $\begin{bmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $(r_2 := r_2 - r_1 \text{ and } r_3 = r_3 - r_1) \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ So it has only the trivial solution $x_1 = 0, x_2 = 0$ and $x_3 = 0$. Note that there is

no free variable in this case.

This gives
$$x_1 = 2x_3$$
, $x_2 = -x_3$ and $x = \begin{bmatrix} 2x_3 \\ -x_3 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ ($r_2 := r_2 - 2r_1, r_3 := r_3 - 4r_1$)
 $\sim (r_2 := r_2 - 2r_1, r_3 := r_3 - 4r_1)$

 $\begin{bmatrix} -x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ 1 \end{bmatrix}$ the parametric vector form).

Next we will see the relation between the solution of homogeneous equation Ax = 0 and inhomogeneous equation Ax = b where $b \neq 0$.

Example 2 Find the solution of the following inhomogeneous equation.

$$Ax = b \text{ where } A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}.$$
Solution: 2⁰ The augmented matrix is $[A \ b] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 2 & 1 & -3 & -1 \\ 4 & 3 & -5 & -1 \end{bmatrix}$

$$\sim (r_2 := r_2 - 2r_1, r_3 := r_3 - 4r_1) \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$$

$$\sim (r_2 := -r_2, r_3 := r_3 - r_2) \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim (r_1 := r_1 - r_2) \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
So x_3 is the free variable and $x_1 - 2x_3 = -1, x_2 + x_3 = -1$. This gives
 $x_1 = -1 + 2x_3, x_2 = -1 - x_3$ and $x = \begin{bmatrix} -1 + 2x_3 \\ -1 - x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ (this is called the parametric vector form).

Remark: From this example and previous example, we can see that the row reduction process to solve Ax = b and Ax = 0 is the same.

We have the following Theorem.

Theorem 2 Suppose Ax = b is consistent. Then the solution set of Ax = b is of the form $x = p + x_h$ where Ap = b and x_h is any solution of the homogeneous equation Ax = 0

2 1.7 Linear independence

Definition 2 A set of vectors $\{v_1, v_2, \dots, v_p\}$ in \mathbb{R}^m is said to be linearly independent if the vector equation $x_1v_1 + x_2v_2 + \dots + x_pv_p = 0$ (zero vector in \mathbb{R}^m) has only trivial solution.

A set of vectors $\{v_1, v_2, \dots, v_p\}$ in \mathbb{R}^m is said to be linearly dependent if the vector equation $x_1v_1 + x_2v_2 + \dots + x_pv_p = 0$ (zero vector in \mathbb{R}^m) has nontrivial solution.

Using the notation in previous equation, we can relate the problem of linear dependence to the solution of homogeneous equation. Recall that the vector equation $x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0$ is the same as the matrix equation

$$Ax = 0$$
 where $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_p \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$

So we have the following result.

Theorem 3 A set of vectors $\{v_1, v_2, \dots, v_p\}$ in \mathbb{R}^m is linearly independent iff the matrix equation Ax = 0 has only trivial solution where $A = [v_1 \ v_2 \ \cdots \ v_p]$ iff the augmented matrix $[v_1 \ v_2 \ \cdots \ v_p \ 0]$ has only trivial solution. A set of vectors $\{v_1, v_2, \dots, v_p\}$ in \mathbb{R}^m is linearly dependent iff the matrix equation Ax = 0 has nontrivial solution where $A = [v_1 \ v_2 \ \cdots \ v_p]$ iff the augmented matrix $[v_1 \ v_2 \ \cdots \ v_p \ 0]$ has nontrivial solution.

Example 3 Determine whether the following vectors are linearly independent. $\begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix}, \begin{bmatrix} -1\\-3\\-5 \end{bmatrix}$.

Solution: Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} -1 \\ -3 \\ -5 \end{bmatrix}$. Consider the augmented $\begin{bmatrix} 1 & 2 & 2 & 0 \end{bmatrix}$

matrix $[v_1 \ v_2 \ v_3 \ 0] = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 2 & 3 & 0 \end{bmatrix}$. From Example 1(A) on page 1, we

know this system has only trivial solution. So these three vectors are linearly independent.

Example 4 Determine if the columns of the matrix form a linearly independent set. $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5 \end{bmatrix}$

Solution: Consider the augmented matrix The augmented matrix is $\begin{bmatrix} A & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 2 & 1 & -3 & 0 \\ 4 & 3 & -5 & 0 \end{bmatrix} \sim (r_2 := r_2 - 2r_1, r_3 := r_3 - 4r_1) \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \sim (r_2 := -r_2, r_3 := r_3 - r_2) \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim (r_1 := r_1 - r_2) \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$ So x_3 is the free variable and $x_1 - 2x_3 = 0, x_2 + x_3 = 0$. This gives $x_1 = 2x_3$, $x_2 = -x_3$ and $x = \begin{bmatrix} 2x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$. So this system has nontrivial solution. Thus the columns of A form a linearly dependent set.

Example 5 Find the value of h for which the following vectors are linearly dependent. $\begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}, \begin{bmatrix} -5 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ h \end{bmatrix}.$

Solution: Consider the augmented matrix $\begin{bmatrix} 1 & -5 & 1 & 0 \\ -1 & 7 & 1 & 0 \\ -3 & 8 & h & 0 \end{bmatrix}$ $\sim (r_2 := r_2 + r_1) \begin{bmatrix} 1 & -5 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ -3 & 8 & h & 0 \end{bmatrix} \sim (r_3 := r_3 + 3r_1) \begin{bmatrix} 1 & -5 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & -7 & h + 3 & 0 \end{bmatrix}$

$$\sim (r_2 := \frac{r_2}{2}) \begin{bmatrix} 1 & -5 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -7 & h + 3 & 0 \end{bmatrix} \sim (r_3 := r_3 + 7r_2) \begin{bmatrix} 1 & -5 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & h + 10 & 0 \end{bmatrix}$$

This system has nontrivial solution if h + 10 = 0, that is h = -10. So these three vectors are dependent if h = -10.