1 1.5 Solution Sets of Linear System

Definition 1 A system of linear equations is called homogeneous if it's of the form $A x=0$ where A is a $m \times n$ matrix and x is a $n \times 1$ vector ad 0 is the zero vector in R^{m}.

Remark: $A x=0$ always has at least one trivial solution, i.e. $x=0$ (the zero vector in R^{n}). For a given homogeneous equation, we are more interested in the nontrivial solution.
The following Theorem is obvious.

Theorem 1 The homogeneous equation $A x=0$ has a nontrivial solution if and only if the equation has at least one free variable.

Let's look at the following examples.
Example 1 Determine whether the following equation has a nontrivial solution.
(A)

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+2 x_{3}=0 \tag{1}\\
x_{1}+3 x_{2}+3 x_{3}=0 \\
x_{1}+2 x_{2}+3 x_{3}=0
\end{array}\right.
$$

(B) $A x=0$ where $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5\end{array}\right]$

Solution: 1^{0} The augmented matrix for (A) is $\left[\begin{array}{llll}1 & 2 & 2 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 2 & 3 & 0\end{array}\right]$. It is row equivalent to $\left[\begin{array}{llll}1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left(r_{2}:=r_{2}-r_{1}\right.$ and $\left.r_{3}=r_{3}-r_{1}\right) \sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ So it has only the trivial solution $x_{1}=0, x_{2}=0$ and $x_{3}=0$. Note that there is
no free variable in this case.
2^{0} The augmented matrix is $\left[\begin{array}{llll}1 & 1 & -1 & 0 \\ 2 & 1 & -3 & 0 \\ 4 & 3 & -5 & 0\end{array}\right] \sim\left(r_{2}:=r_{2}-2 r_{1}, r_{3}:=r_{3}-4 r_{1}\right)$ $\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0\end{array}\right] \sim\left(r_{2}:=-r_{2}, r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-r_{2}\right)$
$\left[\begin{array}{cccc}1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. So x_{3} is the free variable and $x_{1}-2 x_{3}=0, x_{2}+x_{3}=0$. This gives $x_{1}=2 x_{3}, x_{2}=-x_{3}$ and $x=\left[\begin{array}{c}2 x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ (this is called the parametric vector form).

Next we will see the relation between the solution of homogeneous equation $A x=0$ and inhomogeneous equation $A x=b$ where $b \neq 0$.

Example 2 Find the solution of the following inhomogeneous equation.
$A x=b$ where $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5\end{array}\right]$ and $b=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$.
Solution: 2^{0} The augmented matrix is $\left[\begin{array}{ll}A & b\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 2 & 1 & -3 & -1 \\ 4 & 3 & -5 & -1\end{array}\right]$
$\sim\left(r_{2}:=r_{2}-2 r_{1}, r_{3}:=r_{3}-4 r_{1}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1\end{array}\right]$
$\sim\left(r_{2}:=-r_{2}, r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-r_{2}\right)\left[\begin{array}{cccc}1 & 0 & -2 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So x_{3} is the free variable and $x_{1}-2 x_{3}=-1, x_{2}+x_{3}=-1$. This gives $x_{1}=-1+2 x_{3}, x_{2}=-1-x_{3}$ and $x=\left[\begin{array}{c}-1+2 x_{3} \\ -1-x_{3} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ (this is called the parametric vector form).

Remark: From this example and previous example, we can see that the row redution process to solve $A x=b$ and $A x=0$ is the same.

We have the following Theorem.

Theorem 2 Suppose $A x=b$ is consistent. Then the solution set of $A x=b$ is of the form $x=p+x_{h}$ where $A p=b$ and x_{h} is any solution of the homogeneous equation $A x=0$

2 1.7 Linear independence

Definition $2 A$ set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ in R^{m} is said to be linearly independent if the vector equation $x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0$ (zero vector in R^{m}) has only trivial solution.
A set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ in R^{m} is said to be linearly dependent if the vector equation $x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0$ (zero vector in R^{m}) has nontrivial solution.

Using the notation in previous equation, we can relate the problem of linear dependence to the solution of homogeneous equation. Recall that the vector equation $x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0$ is the same as the matrix equation $A x=0$ where $A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{p}\end{array}\right]$ and $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p}\end{array}\right]$
So we have the following result.
Theorem $3 A$ set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ in R^{m} is linearly independent iff the matrix equation $A x=0$ has only trivial solution where $A=\left[\begin{array}{lll}v_{1} & v_{2} & \cdots\end{array} v_{p}\right]$ iff the augmented matrix $\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{p}\end{array}\right]$ has only trivial solution.
A set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ in R^{m} is linearly dependent
iff the matrix equation $A x=0$ has nontrivial solution where $A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{p}\end{array}\right]$ iff the augmented matrix $\left[v_{1} v_{2} \cdots v_{p} 0\right]$ has nontrivial solution.

Example 3 Determine whether the following vectors are linearly independent. $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}-1 \\ -3 \\ -5\end{array}\right]$.

Solution: Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right], v_{3}=\left[\begin{array}{l}-1 \\ -3 \\ -5\end{array}\right]$. Consider the augmented $\operatorname{matrix}\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & 0\end{array}\right]=\left[\begin{array}{llll}1 & 2 & 2 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 2 & 3 & 0\end{array}\right]$. From Example 1(A) on page 1, we know this system has only trivial solution. So these three vectors are linearly independent.

Example 4 Determine if the columns of the matrix form a linearly independent set. $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5\end{array}\right]$
Solution: Consider the augmented matrix The augmented matrix is $[A 0]=$ $\left[\begin{array}{llll}1 & 1 & -1 & 0 \\ 2 & 1 & -3 & 0 \\ 4 & 3 & -5 & 0\end{array}\right] \sim\left(r_{2}:=r_{2}-2 r_{1}, r_{3}:=r_{3}-4 r_{1}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0\end{array}\right] \sim$ $\left(r_{2}:=-r_{2}, r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-r_{2}\right)\left[\begin{array}{cccc}1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So x_{3} is the free variable and $x_{1}-2 x_{3}=0, x_{2}+x_{3}=0$. This gives $x_{1}=2 x_{3}$, $x_{2}=-x_{3}$ and $x=\left[\begin{array}{c}2 x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$. So this system has nontrivial solution.
Thus the columns of A form a linearly dependent set.
Example 5 Find the value of h for which the following vectors are linearly dependent. $\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right],\left[\begin{array}{c}-5 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ h\end{array}\right]$.
Solution: Consider the augmented matrix $\left[\begin{array}{cccc}1 & -5 & 1 & 0 \\ -1 & 7 & 1 & 0 \\ -3 & 8 & h & 0\end{array}\right]$
$\sim\left(r_{2}:=r_{2}+r_{1}\right)\left[\begin{array}{cccc}1 & -5 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ -3 & 8 & h & 0\end{array}\right] \sim\left(r_{3}:=r_{3}+3 r_{1}\right)\left[\begin{array}{cccc}1 & -5 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & -7 & h+3 & 0\end{array}\right]$
$\sim\left(r_{2}:=\frac{r_{2}}{2}\right)\left[\begin{array}{cccc}1 & -5 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -7 & h+3 & 0\end{array}\right] \sim\left(r_{3}:=r_{3}+7 r_{2}\right)\left[\begin{array}{cccc}1 & -5 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & h+10 & 0\end{array}\right]$
This system has nontrivial solution if $h+10=0$, that is $h=-10$. So these three vectors are dependent if $h=-10$.

