### 2.8 Subspace of $R^{n}$ 2.9 Dimensions and Ranks Notes for the class on Feb 25th and March 2nd 2009

## 1 The definition of Subspace

Before we give the general definition, we examine a simple example in detail.
Example 1 Let $H$ be the set consisting of all vectors in the planes $x-3 y+$ $2 z=0$, i.e $H=\{(x, y, z) \mid x-3 y+2 z=0\}$. We can see that $H$ is a plane goes thru the origin. This set $H$ has the following properties:
(a) The zero vector $(0,0,0)$ is in the set $H$.
(b) Suppose $u$ and $v$ are two vectors in $H$. Then $u+v$ is also in $H$.
(c) For each vector $u$ in $H$. Then cu is also in $H$ where $c$ is a scalar.

This leads to the following definition of subspace
Definition $1 A$ subspace of $R^{n}$ is any set $H$ in $R^{n}$ that satisfies the following three properties.
(a) The zero vector is in $H$.
(b) For each $u$ and $v$ in $H$, then $u+v$ is in $H$.
(c) For each $u$ in $H$ and each scalar $c$, the vector $c u$ is in $H$.

Example 2 Let $H$ be the set consisting of all vectors in the line $y=x+1$, i.e $H=\{(x, y) \mid y=x+1\}$. Since the zero vector $(0,0)$ is not in $H$, so $H$ is not a subspace.

Example 3 For $v_{1}, v_{2}$ in $R^{n}$. Given any vector $b$ in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. We can find two numbers $\alpha$ and $\beta$ such that $b=\alpha v_{1}+\beta v_{2}$.
We will show that $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ is a subspace.
We can verify that
(a) The zero vector 0 can be written as $0=0 \cdot v_{1}+0 \cdot v_{2}$. So the zero vector is in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
(b) Suppose $u \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$ and $v \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Then we can find $a_{1}$, $a_{2}, b_{1}$ and $b_{2}$ such that $u=a_{1} v_{1}+a_{2} v_{2}$ and $v=b_{1} v_{1}+b_{2} v_{2}$. Then $u+v=$ $a_{1} v_{1}+a_{2} v_{2}+b_{1} v_{1}+b_{2} v_{2}=a_{1} v_{1}+b_{1} v_{1}+a_{2} v_{2}+b_{2} v_{2}=\left(a_{1}+b_{1}\right) v_{1}+\left(a_{2}+b_{2}\right) v_{2}$ So $u+v$ is in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
(c) Suppose $u \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Then we can find $a_{1}$ and $a_{2}$ such that $u=$
$a_{1} v_{1}+a_{2} v_{2}$. So $c u=c\left(a_{1} v_{1}+a_{2} v_{2}\right)=c a_{1} v_{1}+c a_{2} v_{2}$ which is also in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.

Remark 1 For $v_{1}, v_{2}, \cdots, v_{p}$ in $R^{n}$. Similarly, we can show that $\operatorname{Span}\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ is a subspace.

## 2 Column space and null space

In the following, we will associate two subspaces with a matrix.
Definition 2 The column space of a matrix $A$ is the set $\operatorname{Col}(A)$ of the span of the column vectors of $A$. Suppose $A$ is a $m \times n$ matrix. $\operatorname{Col}(A)$ is a subspace in $R^{m}$.

Example $4 A=\left[\begin{array}{cc}1 & -1 \\ -2 & 3 \\ 1 & -1\end{array}\right]$.
Then $\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right]\right\}$ is a subspace in $R^{3}$
It's obvious that we have the following result
Theorem 1 Suppose $A$ is a $m \times n$ matrix. A vector $b$ is in $\operatorname{Col}(A)$ iff the linear equation $A x=b$ is consistent iff $[A \mid b]$ is consistent.

Definition 3 Suppose $A$ is a $m \times n$ matrix. The null space of a matrix $A$ is the set $\operatorname{Nul}(A)$ of all solutions to the homogeneous equation $A x=0$, i.e. $\operatorname{Nul}(A)=\{x \mid A x=0\}$. Note that $\operatorname{Nul}(A)$ is subspace in $R^{n}$.

Given a subspace. We are interested in finding the minimal set of elements to describe the subspace.

Definition $4 A$ basis for a subspace $H$ of $R^{n}$ is a linearly independent set in $H$ that spans $H$.

Definition 5 The dimension of a nonzero subspace $H$, denoted by $\operatorname{dim} H$, is the number of vectors in any basis for $H$. The dimension of the zero subspace $\{0\}$ is defined to be zero.

It's obvious that $\operatorname{dim}\left(R^{n}\right)=n$. So we have following characterization of a basis for $R^{n}$.
A set of vectors $\left\{v_{1}, v_{2}, \cdots v_{p}\right\}$ in $R^{n}$ forms a basis for $R^{n}$
iff (a) $p=n$ (b) $\left\{v_{1}, v_{2}, \cdots v_{p}\right\}$ is independent, this is the same as the fact that the augmented matrix $[A \mid 0]=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & \left.a_{p} \mid 0\right]\end{array}\right.$ has no free variable.
iff $A=\left[v_{1}, v_{2}, \cdots v_{p}\right]$ is an invertible $n \times n$ matrix
iff $A=\left[v_{1}, v_{2}, \cdots v_{p}\right]$ is an $n \times n$ matrix and the augmented matrix $[A \mid 0]=$ $\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & \left.a_{p} \mid 0\right]\end{array}\right.$ has no free variable.

Note that if $p>n$ then $\left\{v_{1}, v_{2}, \cdots v_{p}\right\}$ is linearly dependent in $R^{n}$. If $p<n$ then $\left\{v_{1}, v_{2}, \cdots v_{p}\right\}$ can't span $R^{n}$.

Example 5 Determine which sets in the following column vectors of each matrix are basis for $R^{2}$ or $R^{3}$.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right],\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 1 & -6 \\ 1 & 1 & 1\end{array}\right],\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 1 & -8 \\ 1 & 1 & 1\end{array}\right],\left[\begin{array}{cccc}2 & 1 & 4 & 1 \\ -2 & 1 & 8 & 2 \\ 1 & 1 & 1 & 3\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ -2 & 1 \\ 1 & 1\end{array}\right]$
Solution: $1^{0}$ Consider $\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)=4-6=-1 \neq 0$. So $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is invertible and its column vectors form a basis.
$2^{0} \operatorname{det}\left(\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]\right)=4-4=0$. So $\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$ is not invertible and its column vectors are not a basis.
$3^{0}$ Consider the augmented matrix $\left[\begin{array}{ccc|c}2 & 1 & 4 & 0 \\ -2 & 1 & -6 \mid 0 \\ 1 & 1 & 1 & 0\end{array}\right]$. Now we perform row reduction.
reduction.
Switch first and third row. $\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ -2 & 1 & -6 & 0 \\ 2 & 1 & 4 & 0\end{array}\right]$
$r_{2}:=r_{2}+2 r_{1}, r_{3}:=r_{3}-2 r_{1}\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 3 & -4 & 0 \\ 0 & -1 & 2 & 0\end{array}\right]$
$r_{2}:=-r_{3}, r_{3}:=r_{2}\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 1 & -2| | & 0 \\ 0 & 3 & -4| |\end{array}\right]$
$r_{3}:=r_{3}+(-3) r_{2}\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$
So there are no free variable. The column vectors of $\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 1 & -6 \\ 1 & 1 & 1\end{array}\right]$ form a basis in $R^{3}$.
$4^{0}$ Consider the augmented matrix $\left[\begin{array}{ccc|c}2 & 1 & 4 & 0 \\ -2 & 1 & -8 & 0 \\ 1 & 1 & 1 & 0\end{array}\right]$. Now we perform row reduction.
Switch first and third row. $\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ -2 & 1 & -8 & 0 \\ 2 & 1 & 4 & 0\end{array}\right]$
$r_{2}:=r_{2}+2 r_{1}, r_{3}:=r_{3}-2 r_{1}\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 3 & -6 \mid 0 \\ 0 & -1 & 2 & 0\end{array}\right]$
$r_{2}:=r_{2} / 3\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 2 & 0\end{array}\right]$
$r_{3}:=r_{3}+r_{2}\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
So $x_{3}$ is a free variable. The column vectors of $\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 1 & -8 \\ 1 & 1 & 1\end{array}\right]$ don't form a basis in $R^{3}$.
$5^{0} .\left[\begin{array}{cccc}2 & 1 & 4 & 1 \\ -2 & 1 & 8 & 2 \\ 1 & 1 & 1 & 3\end{array}\right]$ has 4 column vectors in $R^{3}$. So they are linearly dependent. It can't be a basis for $R^{3}$.
$6^{0}\left[\begin{array}{cc}2 & 1 \\ -2 & 1 \\ 1 & 1\end{array}\right]$ has only two vectors. It can't span $R^{3}$. So it can't be a basis for $R^{3}$.

Now we want to see how to find a basis for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$.
Recall that we can use row reduction to write the solution of $A x=0$ in parametric vector form. The parametric vector form will give us a basis for $\operatorname{Nul}(A)$.

Example 6 Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 1\end{array}\right]$. Find bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$, and then find the dimension of these subspace.

Solution: $1^{0}$ Recall that $\operatorname{Nul}(A)=\{x \mid A x=0\}$. So we have to find the solution of the equation $A x=0$.
We consider the augmented matrix $\left[\begin{array}{ccc|c}1 & 2 & 3 \mid 0 \\ 2 & -1 & 1 \mid & 0\end{array}\right]$.
$r_{2}:=r_{2}+(-2) r_{1}\left[\begin{array}{ccc|c}1 & 2 & 3 & 0 \\ 0 & -5 & -5 \mid & 0\end{array}\right]$
$r_{2}:=r_{2} /(-5)\left[\begin{array}{lll|l}1 & 2 & 3| | \\ 0 & 1 & 1 & 0\end{array}\right]$
$r_{1}:=r_{1}+(-2) r_{2}\left[\begin{array}{lll|l}1 & 0 & 1| | \\ 0 & 1 & 1| |\end{array}\right]$.
So the solution of $A x=0$ is $x_{1}+x_{3}=0$ and $x_{2}+x_{3}=0$ and $x_{3}$ is free. Thus $x_{1}=-x_{3}, x_{2}=-x_{3}$ and $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$. So $\left\{\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Nul}(A)$ and $\operatorname{dim}(\operatorname{Nul}(A))=1$ (we have only one vector in the basis of $\operatorname{Nul}(A)$.)
$2^{0}$ From the basis of $\operatorname{Nul}(A)$, we have $A\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]=0$. Write $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$. So $=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]=0$ and $-a_{1}-a_{2}+a_{3}=0$. Thus $a_{3}=a_{1}+a_{2}$. Recall that $\operatorname{Col}(A)=\operatorname{Span}\left\{a_{1}, a_{2}, a_{3}\right\}=\operatorname{Span}\left\{a_{1}, a_{2}, a_{1}+a_{2}\right\}=\operatorname{Span}\left\{a_{1}, a_{2}\right\}$. From the row reduction process, we also know that $\left\{a_{1}, a_{2}\right\}$ is linearly independent. So the first column and the second column of $A$ form a basis for $\operatorname{Col}(A)$. Hence $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}$ is a basis for $\operatorname{Col}(A)$ and $\operatorname{dim}(\operatorname{Col}(A))=2$. Suppose $A$ is a $m \times n$ matrix with $A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$. Let $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ be a vector in $\operatorname{Nul}(A)$. By definition, we have $A x=0$, i.e
$\left[\begin{array}{lll}a_{1} & a_{2} & \cdots\end{array} a_{n}\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=0\right.$. So $x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n}=0$. Thus any nonzero vector $x$ in $\operatorname{Nul}(A)$ gives us a linear relation of the column vectors. This implies that the column vector of $A$ corresponding to the free variable can be written as a linear combination of the non-free column vectors. So The column vectors of $A$ that corresponding to the basic variables (nonfree variables) form a basis of $\operatorname{Col}(A)$.

To find the basis of the $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$.
(1) Row reduce $[A \mid 0]$ to row reduced echelon form.
(2) Express the solution of $A x=0$ in parametric vector form. Then we can find the basis for $\operatorname{Nul}(A)$.
(3) The column vectors of $A$ that corresponding to the basic variables (nonfree variables) form a basis of $\operatorname{Col}(A)$.

Example 7 Let $A=\left[\begin{array}{cccc}-3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8\end{array}\right]$. Find bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$, and then find the dimension of these subspace.

Solution: $1^{0}$ Recall that $\operatorname{Nul}(A)$ is the set of all solution of the homogeneous equation $A x=0$. Consider the augmented matrix $\left[\begin{array}{cccc|c}-3 & 6 & -1 & 1 \mid 0 \\ 1 & -2 & 2 & 3 \mid 0 \\ 2 & -4 & 5 & 8 & 0\end{array}\right]$.
First we switch the first and the second row to get $\left[\begin{array}{cccc|c}1 & -2 & 2 & 3 \mid c \\ -3 & 6 & -1 & 1 \mid 0 \\ 2 & -4 & 5 & 8 & 0\end{array}\right]$. $r_{2}:=r_{2}+3 r_{1}\left[\begin{array}{cccc|c}1 & -2 & 2 & 3 & 0 \\ 0 & 0 & 5 & 10 & 0 \\ 2 & -4 & 5 & 8 & 0\end{array}\right]$
$r_{3}:=r_{3}+\left(-2 r_{1}\right)\left[\begin{array}{cccc|c}1 & -2 & 2 & 3 & 0 \\ 0 & 0 & 5 & 10 & 0 \\ 0 & 0 & 1 & 2 & 0\end{array}\right] r_{2}:=r_{2} / 5\left[\begin{array}{cccc|c}1 & -2 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0\end{array}\right]$
$r_{3}:=r_{3}-r_{2}\left[\begin{array}{cccc|c}1 & -2 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$r_{1}:=r_{1}-2 r_{2}\left[\begin{array}{cccc|c}1 & -2 & 0 & -1 \mid c \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
So $x_{2}$ and $x_{4}$ are free variables. We have $x_{1}-2 x_{2}-x_{4}=0$ and $x_{3}+2 x_{4}=0$.
Hence $x_{1}=2 x_{2}+x_{4}$ and $x_{3}=-2 x_{4}$.
The solution is $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}2 x_{2}+x_{4} \\ x_{2} \\ -2 x_{4} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}2 x_{2} \\ x_{2} \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}x_{4} \\ 0 \\ -2 x_{4} \\ x_{4}\end{array}\right]$
$=x_{2}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 1\end{array}\right]$. So the basis for $\operatorname{Nul}(A)$ is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 1\end{array}\right]\right\}$ and $\operatorname{dim}(\operatorname{Nul}(A))=$
2.
$2^{0}$ From the row reduction result, we know that $x_{1}$ and $x_{3}$ are not free veriables. So the first column and the third column of $A$ form a basis for $\operatorname{Col}(A)$.

Hence $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]\right.$ and $\left.\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]\right\}$ form a basis for $\operatorname{Col}(A)$ and $\operatorname{dim}(\operatorname{Col}(A))=2$.
The basis for $\operatorname{Span}\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ is the same as the basis for $\operatorname{Col}(A)$ where $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{p}\end{array}\right]$

Example 8 Find a basis for the subspace spanned by the given vectors

$$
\left\{\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
-2 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right]\right\} .
$$

Solution: Consider the matrix $A=\left[\begin{array}{cccc}-3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8\end{array}\right]$. From previous question, we know that $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]\right.$ and $\left.\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]\right\}$ form a basis for $\operatorname{Col}(A)$. So $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]\right\}$ is a basis for the subspace spanned by the given vectors $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}6 \\ -2 \\ -4\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 8\end{array}\right]\right\}$.

Theorem 2 We denote $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))$. If $A$ is a $m \times n$ matrix, then $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n$.

Proof: Since $A$ is a $m \times n$ matrix, there are $n$ variable for the homogeneous equation $A x=0$.
The number of non-free variables + the number of free variables $=n$.
Recall that the number of non-free variables $=\operatorname{dim}(\operatorname{Col}(A))=\operatorname{rank}(A)$ and the number of free variables $=\operatorname{dim}(\operatorname{Nul}(\mathrm{A}))$. Hence $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=n$.

Definition 6 Suppose the set $\mathfrak{B}=\left\{u_{1}, u_{2}, \cdots u_{p}\right\}$ is a basis for a subspace $H$. For each $b$ in $H$, we can find $x_{1}, x_{2} \cdots, x_{p}$ such that $x_{1} u_{1}+x_{2} u_{2}+\cdots+$
$x_{p} u_{p}=b$. The coordinate of $b$ relative to the basis $\mathfrak{B}$ is the vector $[b]_{\mathfrak{B}}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p}\end{array}\right]$
Theorem 3 Suppose $\mathfrak{B}=\left\{u_{1}, u_{2}, \cdots u_{p}\right\}$ is a basis for a subspace $H$. Let $A=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{p}\end{array}\right]$. Then $A[b]_{\mathfrak{B}}=b$.

To find coordinate of a vector $b$, just solve $A x=b$. Then $[b]_{\mathfrak{B}}=x$.
Example 9 Find the $\mathfrak{B}$-coordinate of the of the vector $b=\left[\begin{array}{c}22 \\ 0 \\ 14\end{array}\right]$ relative to the basis $\mathfrak{B}=\left\{\left[\begin{array}{c}-3 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{c}7 \\ 5 \\ -6\end{array}\right]\right\}$
Solution: Let $A=\left[\begin{array}{cc}-3 & 7 \\ 1 & 5 \\ -4 & -6\end{array}\right]$. We solve $A x=\left[\begin{array}{c}22 \\ 0 \\ 14\end{array}\right]$.
Consider the augmented matrix $[A \mid b]=\left[\begin{array}{ccc}-3 & 7 & 22 \\ 1 & 5 & 0 \\ -4 & -6 & 14\end{array}\right]$.
Switch first and second row. $\left[\begin{array}{ccc}1 & 5 & 0 \\ -3 & 7 & 22 \\ -4 & -6 & 14\end{array}\right]$
$r_{2}:=r_{2}+3 r_{1}, r_{3}:=r_{3}+4 r_{1},\left[\begin{array}{ccc}1 & 5 & 0 \\ 0 & 22 & 22 \\ 0 & 14 & 14\end{array}\right]$
$r_{2}:=r_{2} / 22, r_{3}:=r_{3} / 14,\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
$r_{3}:=r_{3}-r_{2}\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right] r_{1}:=r_{1}-5 r_{2}\left[\begin{array}{ccc}1 & 0 & -5 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$

So $x_{1}=-5, x_{2}=1$ and the coordinate of $[b]_{\mathfrak{B}}=\left[\begin{array}{c}-5 \\ 1\end{array}\right]$.

