2.2 The inverse of a Matrix (Notes for the class on Feb 23, 2009)

1 The definition of inverse Matrix

The inverse of a real number $a \neq 0$ is a real number denoted a^{-1} such that $a^{-1} a=1$.

In the following, we use I to denote the $n \times n$ identity matrix. Recall that $A I=I A=A$ for any $n \times n$ matrix A.

We can define the inverse of a $n \times n$ matrix by the following.
Definition 1 The inverse of an $n \times n$ matrix A is a $n \times n$ matrix such that $A B=I$ and $B A=I$ where I is the $n \times n$ identity matrix. The matrix A is said to be invertible if it has an inverse. The notation for the inverse of A is A^{-1}, i.e. $A A^{-1}=A^{-1} A=I$.

Example 1 Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
(a) Show that $A^{2}-2 A=3 I$.
(b) Use the formula $A^{2}-2 A=3 I$ to find an formula for A^{-1} in terms of A. Solution: 1^{0} First, we compute
$A^{2}=A \cdot A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}1 \cdot 1+2 \cdot 2 & 1 \cdot 2+2 \cdot 1 \\ 2 \cdot 1+1 \cdot 2 & 2 \cdot 2+1 \cdot 1\end{array}\right]=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]$.
So $A^{2}-2 A=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]-2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}5-2 & 4-4 \\ 4-3 & 5-2\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=$ $3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=3 I$.
2^{0} First, note that $A^{2}-2 A=A \cdot A-2 A \cdot I=A(A-2 I)$. Here we have used the fact that $A=A I$. So $A^{2}-2 A=3 I$ implies that $A(A-2 I)=3 I$, $\frac{1}{3} A(A-2 I)=I$ and $A \cdot \underbrace{\left.\frac{1}{3}(A-2 I)\right)}_{A^{-1}}=I$. Hence $A^{-1}=\frac{1}{3}(A-2 I)$.

Example 2 Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$. It can be shown that $A^{3}-3 A^{2}-9 A=5 I$.

What's the formula for A^{-1} ?
Solution: Note that $A^{3}-3 A^{2}-9 A=A\left(A^{2}-2 A-9 I\right)$. From $A^{3}-3 A^{2}-$ $9 A=5 I$, we get $A\left(A^{2}-3 A-9 I\right)=5 I$ and $A(\underbrace{\frac{1}{5}\left(A^{2}-3 A-9 I\right)}_{A^{-1}})=I$ So $A^{-1}=\frac{1}{5}\left(A^{2}-3 A-9 I\right)$

2 The inverse of a 2×2 matrix

Next we will see how to find the inverse of a 2 matrix. Recall that the determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\operatorname{det}(A)=a d-b c$. We can find the inverse of a 2×2 matrix quite easily by hand. Here is the theorem

Theorem 1 Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
If $\operatorname{det}(A)=a d-b c=0$ then A is not invertible.
If $\operatorname{det}(A)=a d-b c \neq 0$. Then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Proof: It can be verified by direct computation.
Example 3 Find the inverse of the following matrices if possible.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]$.
Solution: $1^{0} \operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)=1 \cdot 4-2 \cdot 3=4-6=-2$. So the inverse of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is $\frac{1}{-2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$.
$2^{0} \operatorname{det}\left(\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]\right)=2 \cdot 2-(-1) \cot (-4)=4-4=0$. So the matrix $\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]$ is not invertible.

3 The solution of $A x=b$ and the inverse matrix

Suppose A is a $n \times n$ matrix and A is invertible. Now we can use it to solve the linear equation $A x=b$. Multiply A^{-1} to both sides of the equation, we get $A^{-1} A x=A^{-1} b$. Now use the fact that $A^{-1} A=I$ and $I x=x$. We get $x=A^{-1} b$. So we have the following theorem.

Theorem 2 Suppose A is invertible. For any $b \in R^{n}$, the linear equation $A x=b$ has a unique solution $x=A^{-1} b$. In particular, $A x=0$ has only trivial solution if A is invertible.

Next, we will see how to use row reduction to find the inverse of a matrix. Let's look at a 3×3 example. Suppose the inverse of A exists. We write the inverse $A^{-1}=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ where u_{1}, u_{2} and u_{3} are the column vectors of A^{-1} Recall that the 3×3 identity matrix is $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then we have $A A^{-1}=A\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]=\left[\begin{array}{lll}A u_{1} A u_{2} A u_{n}\end{array}\right]$. So $A A^{-1}=I$ is the same as $\left[A u_{1} A u_{2} A u_{2}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. This implies that
$A u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A u_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A u_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
So we can find u_{1} and u_{2} and u_{3} by solving the linear system corresponding the augmented matrix $\left[\begin{array}{ll}A & 1 \\ A & 0\end{array}\right],\left[\begin{array}{ll} & 0 \\ A & 1 \\ & 0\end{array}\right]$ and $\left[\begin{array}{ll} & 0 \\ A & 0 \\ & 1\end{array}\right]$. This is the same as considering the augmented matrix $[A \mid I]$. If $[A \mid I]$ is row equivalent to $I \mid B$ then $B=A^{-1}$.

Here is the method to compute the inverse of A.
First, consider the augmented matrix $[A \mid I]$. Then we perform roe reduction on $[A \mid I]$. There are two cases.
Case 1. $[A \mid I]$ is row equivalent to $\left[I \mid A^{-1}\right]$.
Case 2. There is at least one free variable. Then A is not invertible.

Example 4 Find the inverse of the following matrix if possible $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right],\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -1 & 1 \\ 4 & 11 & -5\end{array}\right],\left[\begin{array}{lll}3 & 2 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 1\end{array}\right],\left[\begin{array}{ccc}2 & 6 & 1 \\ -1 & -1 & 0 \\ 1 & 4 & 1\end{array}\right]$.
Solution: (a) Consider the augmented matrix $\left[\begin{array}{lll|lll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
switch 1st row and 2nd row. $\left[\begin{array}{ccc|ccc}1 & 0 & 1 \mid & 0 & 1 & 0 \\ 0 & 1 & 1|\mid & 1 & 0 & 0 \\ 1 & 1 & 1 \mid & 0 & 0 & 1\end{array}\right]$
$r_{3}:=r_{3}+(-1) r_{1}\left[\begin{array}{ccc|ccc}1 & 0 & 1 \mid & 0 & 1 & 0 \\ 0 & 1 & 1| | & 0 & 0 \\ 0 & 1 & 0 \mid & 0 & -1 & 1\end{array}\right]$
$r_{3}:=r_{3}+(-1) r_{2}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 & 1\end{array}\right]$
$r_{3}:=-r_{3}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & -1\end{array}\right]$
$r_{2}:=r_{2}-r_{3}\left[\begin{array}{ccccc}1 & 0 & 1 \mid 0 & 1 & 0 \\ 0 & 1 & 0 \mid 0 & -1 & 1 \\ 0 & 0 & 1 \mid 1 & 1 & -1\end{array}\right]$
$r_{1}:=r_{1}-r_{3}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 1 & -1\end{array}\right]$
So the inverse of $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ is $\left[\begin{array}{cccc}-1 & 0 & 1 & \| \\ 0 & -1 & 1 & \| \\ 1 & 1 & -1\end{array}\right]$

$r_{2}:=r_{2}+(-2) r_{1}\left[\begin{array}{ccc|ccc}1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 5 & -3 & 1 & -2 & 0 \\ 4 & 11 & -5 & 0 & 0 & 1\end{array}\right]$
$r_{3}:=r_{3}-4 r_{1}\left[\begin{array}{ccc|ccc}1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 5 & -3 & 1 & -2 & 0 \\ 0 & 15 & -9 & 0 & -4 & 1\end{array}\right]$
$r_{3}:=r_{3}+(-3) r_{2}\left[\begin{array}{ccc|ccc}1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 5 & -3 & 1 & -2 & 0 \\ 0 & 0 & 0 & -3 & 2 & 1\end{array}\right]$ So there is at least one free
variable. Therefore the matrix $\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -1 & 1 \\ 4 & 11 & -5\end{array}\right]$ is not invertible.
(c) Consider the augmented matrix $\left[\begin{array}{lll|lll}3 & 2 & 2 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 1 & 2 & 1|\mid 0 & 0 & 1\end{array}\right]$

First, we switch 1st row and second row to get $\left[\begin{array}{ccc|ccc}1 & 0 & 2 \mid & 0 & 1 & 0 \\ 3 & 2 & 2 \mid 1 & 0 & 0 \\ 1 & 2 & 1 \mid & 0 & 0 & 1\end{array}\right]$
$r_{2}:=r_{2}+(-3) r_{1}\left[\begin{array}{ccc|ccc}1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 2 & -4 & 1 & -3 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1\end{array}\right]$
$r_{3}:=r_{3}+(-1) r_{1}\left[\begin{array}{ccc|ccc}1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 2 & -4 & 1 & -3 & 0 \\ 0 & 2 & -1| | 0 & -1 & 1\end{array}\right]$
$r_{3}:=r_{3}-r_{2}\left[\begin{array}{ccc|ccc}1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 2 & -4 & 1 & -3 & 0 \\ 0 & 0 & 3 & -1 & 2 & 1\end{array}\right]$
$r_{3}=\frac{1}{3} r_{3}\left[\begin{array}{ccc|ccc}1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 2 & -4 & 1 & -3 & 0 \\ 0 & 0 & 1 & -1 / 3 & 2 / 3 & 1 / 3\end{array}\right]$
$r_{2}=r_{2}+4 r_{3}\left[\begin{array}{ccc|ccc}1 & 0 & 2 \mid & 0 & 1 & 0 \\ 0 & 2 & 0 & -1 / 3 & -1 / 3 & 4 / 3 \\ 0 & 0 & 1 & -1 / 3 & 2 / 3 & 1 / 3\end{array}\right]$
$r_{1}=r_{1}+(-2) r_{3}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 2 / 3 & -1 / 3 & -2 / 3 \\ 0 & 2 & 0 & -1 / 3 & -1 / 3 & 4 / 3 \\ 0 & 0 & 1 & -1 / 3 & 2 / 3 & 1 / 3\end{array}\right]$
$r_{2}:=\frac{1}{2} r_{2}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 2 / 3 & -1 / 3 & -2 / 3 \\ 0 & 1 & 0 & -1 / 6 & -1 / 6 & 2 / 3 \\ 0 & 0 & 1 & -1 / 3 & 2 / 3 & 1 / 3\end{array}\right]$.

So the inverse of $\left[\begin{array}{lll}3 & 2 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}2 / 3 & -1 / 3 & -2 / 3 \\ -1 / 6 & -1 / 6 & 2 / 3 \\ -1 / 3 & 2 / 3 & 1 / 3\end{array}\right]$
(d) Consider the augmented matrix $\left[\begin{array}{ccc|ccc}2 & 6 & 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 4 & 1 & 0 & 0 & 1\end{array}\right]$
switch 1st and 3rd row $\left[\begin{array}{ccc|ccc}1 & 4 & 1 \mid & 0 & 0 & 1 \\ -1 & -1 & 0 \mid & 0 & 1 & 0 \\ 2 & 6 & 1 & 1 & 0 & 0\end{array}\right]$
$r_{2}:=r_{2}+r_{1}\left[\begin{array}{ccc|ccc}1 & 4 & 1 \mid 0 & 0 & 1 \\ 0 & 3 & 1| | 0 & 1 & 1 \\ 2 & 6 & 1 \mid & 1 & 0 & 0\end{array}\right]$
$r_{3}:=r_{3}+(-2) r_{1}\left[\begin{array}{ccc|ccc}1 & 4 & 1 & 0 & 0 & 1 \\ 0 & 3 & 1 & 0 & 1 & 1 \\ 0 & -2 & -1 & 1 & 0 & -2\end{array}\right]$
$r_{2}:=r_{2}+r_{3}\left[\begin{array}{ccc|ccc}1 & 4 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & -2 & -1 & 1 & 0 & -2\end{array}\right]$
$r_{3}:=r_{3}+2 r_{2}\left[\begin{array}{ccc|ccc}1 & 4 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & -1 \mid & 3 & 2 & -4\end{array}\right]$
$r_{3}:=-r_{3}\left[\begin{array}{ccc|ccc}1 & 4 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -3 & -2 & 4\end{array}\right]$
$r_{1}:=r_{1}-r_{3}\left[\begin{array}{ccc|ccc}1 & 4 & 0 & 3 & 2 & -3 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -3 & -2 & 4\end{array}\right]$

$$
\begin{aligned}
& r_{1}:=r_{1}+(-4) r_{2}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & -2 & 1 \\
0 & 1 & 0 & 1 & 1 & -1 \\
0 & 0 & 1 & -3 & -2 & 4
\end{array}\right] \\
& \text { So the inverse of }\left[\begin{array}{ccc}
2 & 6 & 1 \\
-1 & -1 & 0 \\
1 & 4 & 1
\end{array}\right] \text { is }\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & 1 & -1 \\
-3 & -2 & 4
\end{array}\right] \text { Recall that if } A \text { is }
\end{aligned}
$$

invertible then $A x=b$ has a unique solution $x=A^{-1} b$.
Example 5 Use the formula of A^{-1} to solve $A x=\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$ where $A=$ $\left[\begin{array}{ccc}2 & 6 & 1 \\ -1 & -1 & 0 \\ 1 & 4 & 1\end{array}\right]$.
Solution: In previous question, we have found $A^{-1}=\left[\begin{array}{ccc}-1 & -2 & 1 \\ 1 & 1 & -1 \\ -3 & -2 & 4\end{array}\right]$. So
$x=A^{-1}\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]=\left[\begin{array}{ccc}-1 & -2 & 1 \\ 1 & 1 & -1 \\ -3 & -2 & 4\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]=\left[\begin{array}{c}-1 \cdot 2+(-2) \cdot(-1)+1 \cdot 4 \\ 1 \cdot 2+1 \cdot(-1)+(-1) \cdot 4 \\ -3 \cdot 2+(-2) \cdot(-1)+4 \cdot 4\end{array}\right]=$ $\left[\begin{array}{c}4 \\ -3 \\ 12\end{array}\right]$.

