Notes for the class on Feb 18, 2009

1 2.1 Matrix Algebra

Definition 1 An $m \times n$ matrix is a collection of numbers (called entries) $\left[a_{i j}\right]_{1 \leq i \leq m, 1 \leq j \leq n}$. We use the notation $A_{i j}$ to denote the (i, j)-th entry $a_{i j}$.

$$
A=\left[\begin{array}{ccccc}
& & i-\text { th row } & & \\
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
& & \vdots & & \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
& & \vdots & & \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right] j-\text { th column } .
$$

We can define the addition of two matrices and the scalar multiplication by the following.

Definition 2 Let A and B are two matrices of the size. Then $(A+B)_{i j}=$ $A_{i j}+B_{i j}$ and $(c A)_{i j}=c A_{i j}$

Example 1 Let $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3\end{array}\right]$ and $B=\left[\begin{array}{ccc}0 & -1 & 2 \\ -2 & 3 & -2\end{array}\right]$. Find $2 A-3 B$.
Solution:

$$
\begin{aligned}
& 2 A-3 B \\
= & 2\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & -3
\end{array}\right]-3\left[\begin{array}{ccc}
0 & -1 & 2 \\
-2 & 3 & -2
\end{array}\right] \\
= & {\left[\begin{array}{ccc}
2 & 2 & -2 \\
4 & 2 & -6
\end{array}\right]+\left[\begin{array}{ccc}
0 & 3 & -6 \\
6 & -9 & 6
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
2+0 & 2+3 \\
4+6 & -2-6 \\
4+6 & -6+6
\end{array}\right] } \\
= & {\left[\begin{array}{ccc}
2 & 5 & -8 \\
10 & -7 & 0
\end{array}\right] }
\end{aligned}
$$

Now we want to define the multiplication of two matrices.
Definition 3 (row column rule) Let A be a $m \times n$ matrix and and B be a $n \times p$ matrix. Then $A B$ is a $m \times p$ matrix where
$(A B)_{i j}=$ the dot product of the $i-$ th row of A and the $j-$ th column of the matrix B.

Example 2 Let $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3\end{array}\right], B=\left[\begin{array}{ccc}4 & -2 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find $A B$.
(b) Find $B A$
(b) Find B^{2}.

Solution: 1^{0} Note that A is a 2×3 matrix and B is a 3×3 matrix. So $A B$ is a 2×3 matrix. We have
$A B=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3\end{array}\right]\left[\begin{array}{ccc}4 & -2 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{l}{\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]} \\ {\left[\begin{array}{lll}2 & 1 & -3\end{array}\right]\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]}\end{array}\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{lll}2 & 1 & -3\end{array}\right]\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right] \quad\left[\begin{array}{lll}2 & 1 & -3\end{array}\right]\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right]$
$=\left[\begin{array}{llll}1 \cdot 4+1 \cdot 0+(-1) \cdot 1 & 1 \cdot(-2)+1 \cdot 1+(-1) \cdot 0 & 1 \cdot(-2)+1 \cdot 0+(-1) \cdot 1 \\ 2 \cdot 4+1 \cdot 0+(-3) \cdot 1 & 2 \cdot(-2)+1 \cdot 1+(-3) \cdot 0 & 2 \cdot(-2)+1 \cdot 0+(-3) \cdot 1\end{array}\right]$
$=\left[\begin{array}{lll}3 & -1 & -3 \\ 5 & -3 & -7\end{array}\right]$.
2^{0} Since B is a 3×3 matrix and A is a 2×3 matrix, $B A$ is not defined.
$3^{0} B^{2}=\left[\begin{array}{ccc}4 & -2 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}4 & -2 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
4 \cdot 4+(-2) \cdot 0+(-2) \cdot 1 & 4 \cdot(-2)+(-2) \cdot 1+(-2) \cdot 0 & 4 \cdot(-2)+(-2) \cdot 0+(-2) \cdot 1 \\
0 \cdot 4+1 \cdot 0+0 \cdot 1 & 0 \cdot(-2)+1 \cdot 1+0 \cdot 0 & 0 \cdot(-2)+1 \cdot 0+0 \cdot 1 \\
1 \cdot 4+0 \cdot 0+1 \cdot 1 & 1 \cdot(-2)+0 \cdot 1+1 \cdot 0 & 1 \cdot(-2)+0 \cdot 0+1 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
14 & -10 & -10 \\
0 & 1 & 0 \\
5 & -2 & -1
\end{array}\right] .
\end{aligned}
$$

Definition 4 The $n \times n$ identity matrix is denoted by I_{n} where the diagonal entries are all one and the rest of entries are zero, i.e. $I=\left[\begin{array}{ccccc}1 & \cdots & 0 & \cdots & 0 \\ & & \vdots & & \\ 0 & \cdots & 1 & \cdots & 0 \\ & & \vdots & & \\ 0 & \cdots & 0 & \cdots & 1\end{array}\right]$. Sometime we will just use I to denote the identity matrix.

Example 3 The 2×2 identity matrix is $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
The 3×3 identity matrix is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Theorem 1 We have the following properties of matrix. The following matrices has the right sizes for which the indicated products and sums are defined
(a) $A(B C)=(A B) C$
(b) $A(B+C)=A B+A C$
(c) $(B+C) A=B A+C A$
(d) $c(A B)=(c A) B=A(c B)$ (here c is a number).
(e) $I_{m} A=A=A I_{n}(A$ is a $m \times n$ matrix $)$.

Matrix multiplication is different from the scalar multiplication. In general, $A B \neq B A$. The following is an example.

Example 4 Let $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$.
Then $A B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right]$ and $B A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$.
So $A B \neq B A$.

Also $A B=0$. we cannot conclude $A=0$ or $B=0$. The following is an example.

Example 5 Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
Then $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
Nest, we define the transport of a matrix.
Definition 5 The transport of a $m \times n$ matrix is the $n \times m n$ matrix, denoted by A^{T}, whose columns are formed by the corresponding rows of A

Example 6 Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Then $A^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$
Example 7 Let $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Then $v=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Compute $u v^{T}$ and $u^{T} v$.
Solution: $u v^{T}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18\end{array}\right]$.
$u^{T} v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]=[4+10+18]=[32]$.

