Notes for the class on Feb 11, 2009

1 1.8 Linear Transformation

Recall that if $A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$ and $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ then
$A x=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n}$.
Definition 1 Given a $m \times n$ matrix. We can define a transformation T : $R^{n} \mapsto R^{m}$ by $T(x)=A x$ for $x \in R^{n}$. The set R^{n} is called the domain of T and $T(x)$ is called the image of of T. The set of all images $T(x)$ is called the range of T.

Remark:

$b \in R^{m}$ is in the range of T
iff there exists x in R^{n} such that $A x=b$
iff there exists x in R^{n} such that $x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{n} a_{n}=b$
iff b is a linear combination of the columns of A
iff b is in the span of columns of A
iff the linear system $[A b]$ is consistent
Let's look at the following examples.
Example 1 Let $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5\end{array}\right]$.
(A) Find the transformation T associated with the matrix A.
(B) Is $b=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$ in the range of T ? Also find x such that $A x=b$. Also find x such that $A x=b$. Determine whether x is unique.
(C) Is $c=\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right]$ in the range of T ? Also find x such that $A x=c$. Is there more than one x whose image is under T is b ?

Solution: $1^{0} T(x)=A x=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 1 & -3 \\ 4 & 3 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{1}\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]+x_{3}\left[\begin{array}{l}-1 \\ -3 \\ -5\end{array}\right]=$ $\left[\begin{array}{c}x_{1}+x_{2}-x_{3} \\ 2 x_{1}+x_{2}-3 x_{3} \\ -3 x_{1}+3 x_{2}-5 x_{3}\end{array}\right]$. $2^{0} b=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$ in the range of T
iff there exists x such that $T(x)=b$
iff there exists x such that $A x=b$
Consider augmented matrix for $\left[\begin{array}{ll}A & b\end{array}\right]==\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 2 & 1 & -3 & -1 \\ 4 & 3 & -5 & -1\end{array}\right]$
$\sim\left(r_{2}:=r_{2}-2 r_{1}, r_{3}:=r_{3}-4 r_{1}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1\end{array}\right]$
$\sim\left(r_{2}:=-r_{2}, r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-r_{2}\right)\left[\begin{array}{cccc}1 & 0 & -2 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So x_{3} is the free variable and $x_{1}-2 x_{3}=-1, x_{2}+x_{3}=-1$. This gives $x_{1}=-1+2 x_{3}, x_{2}=-1-x_{3}$ and $x=\left[\begin{array}{c}-1+2 x_{3} \\ -1-x_{3} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ (this
is called the parametric vector form). There are infinitely many x such that $A x=b$ (so it is not unique), i.e. $T(x)=b$.
3^{0} Consider augmented matrix for $[A c]=\left[\begin{array}{llll}1 & 1 & -1 & 2 \\ 2 & 1 & -3 & 3 \\ 4 & 3 & -5 & 8\end{array}\right]$
$\sim\left(r_{2}:=r_{2}-2 r_{1}, r_{3}:=r_{3}-4 r_{1}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & 0\end{array}\right]$
$\sim\left(r_{2}:=-r_{2}, r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$. The last row implies that $0=1$
which is impossible. So this system is inconsistent and c is not in the range of T.

Example 2 Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 4 & 3\end{array}\right]$. Let $T(x)=A x$. Is $b=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$ in the range of T ? Also find x such that $A x=b$. Determine whether x is unique.

Solution:
1^{0} Consider augmented matrix for $\left[\begin{array}{ll}A & b\end{array}\right]==\left[\begin{array}{ccc}1 & 1 & 0 \\ 2 & 1 & -1 \\ 4 & 3 & -1\end{array}\right]$
$\sim\left(r_{2}:=r_{2}-2 r_{1}, r_{3}:=r_{3}-4 r_{1}\right)\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1\end{array}\right]$
$\sim\left(r_{2}:=-r_{2}, r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-r_{2}\right)\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$. This gives $x_{1}=-1, x_{2}=-1$ and $x=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. So we have a unique $x=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ such that $A x=b$, i.e. $T(x)=b$.

Given a matrix A. The transformation $T(x)=A x$ satisfies $T(u+v)=$ $T(u)+T(v)$ and $T(c u)=c T(u)$. (because $A(u+v)=A u+A v$ and $A(c u)=$ $c A u$.) This leads to the following definition.

Definition $2 A$ transformation T is called linear if $T(u+v)=T(u)+T(v)$ and $T(c u)=c T(u)$
Note that if T is a linear transformation then $T(a u+b v)=T(a u)+T(b v)=$ $a T(u)+b T(v)$.

Example 3 Let $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ Suppose T is a linear transformation with $T\left(e_{1}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ and $T\left(e_{2}\right)=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$. Find Tx where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Solution: Note that $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]=x_{1} e_{1}+x_{2} e_{2}$. Since T is linear, we have
$T(x)=T\left(x_{1} e_{1}+x_{2} e_{2}\right)=x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)=x_{1}\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+x_{2}\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]=$ $\left[\begin{array}{c}x_{1}+2 x_{2} \\ x_{1}-x_{2} \\ -2 x_{1}+2 x_{2}\end{array}\right]$.

Example 4 Let $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ Suppose T is a linear transformation with $T\left(e_{1}+e_{2}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ and $T\left(2 e_{1}+3 e_{2}\right)=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$. Find $T(x)$ where $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Solution: Note that $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]=x_{1} e_{1}+x_{2} e_{2}$. Since T is linear, we have $T(x)=T\left(x_{1} e_{1}+x_{2} e_{2}\right)=x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)$. It suffices to find $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$. Using $T\left(e_{1}+e_{2}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ and $T\left(2 e_{1}+3 e_{2}\right)=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$, we have $T\left(e_{1}\right)+T\left(e_{2}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ and $2 T\left(e_{1}\right)+3 T\left(e_{2}\right)=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$. Multiply (-2) to $T\left(e_{1}\right)+T\left(e_{2}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$ and add it to $2 T\left(e_{1}\right)+3 T\left(e_{2}\right)=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$, we get $-2 T\left(e_{1}\right)-2 T\left(e_{2}\right)+2 T\left(e_{1}\right)+3 T\left(e_{2}\right)=-2\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$. So $T\left(e_{2}\right)=$ $-2\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{c}0 \\ -3 \\ 6\end{array}\right]$. Using $T\left(e_{1}\right)+T\left(e_{2}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$, we get $T\left(e_{2}\right)=$ $\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]-T\left(e_{1}\right)=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]-\left[\begin{array}{c}0 \\ -3 \\ 6\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -8\end{array}\right]$ Thus $T(x)=x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)=$

$$
x_{1}\left[\begin{array}{c}
0 \\
-3 \\
6
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
4 \\
-8
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-3 x_{1}+4 x_{2} \\
6 x_{1}-8 x_{2}
\end{array}\right]
$$

