Homework for section 2.1 Sec 2.2 Due: Feb 25 (Wednesday) You have to show your work to get full credits.

Sec 2.1

1. Problem 6 (Just compute $A B$ by row column rule)

Problem 9 (Hint: Compute $A B$ and $B A$. Then solve the equation for each entry.)
Problem 27.
2. Let $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(a) Find A^{2}, A^{3}. (Here $A^{2}=A A$ and $\left.A^{3}=A A A\right)$.
(b) Let $B=A^{T}$. Compute $A B$ and $B A$ and $A B-B A$.
3. Let $A=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$. Show that $A^{3}-6 A^{2}+11 A=6 I$ where $I=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is the 3×3 identity matrix. (Hint: First compute A^{2}, A^{3}. Then compute $A^{3}-6 A^{2}+11 A$.

Sec 2.2

1. Problem 2

Problem 31
Problem 32
Problem 33. Just find the inverse of $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
2. Let A be the matrix defined in Problem 3 above, i.e. $A=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.

We have show that $A^{3}-6 A^{2}+11 A=6 I$. Use this equation $A^{3}-6 A^{2}+$ $11 A=6 I$ to find an expression for A^{-1} in terms of A.

