Homework for section 1.1 Due: Jan 21 (Wednesday) You have to show your work to get full credits.

In the following, the augmented matrix of a linear system has been reduced by row operations to the form shown. In each case, continue the appropriate row operations and describe the solution set of the original system:
Problem 7. $\left[\begin{array}{cccc}1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

Problem 9. $\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 2 & 4\end{array}\right]$.
Solve the systems in the following problems.
Problem 11.

$$
\begin{array}{rccc}
& x_{2} & +4 x_{3} & =-5 \\
x_{1} & +3 x_{2} & +5 x_{3} & =-2 \\
3 x_{1} & +7 x_{2} & +5 x_{3} & =6
\end{array}
$$

Problem 13.

$$
\begin{array}{cccc}
x_{1} & & -3 x_{3} & =8 \\
2 x_{1} & +2 x_{2} & +9 x_{3} & =7 \\
& x_{2} & +5 x_{3} & =-2
\end{array}
$$

Problem 25. Find an equation involving g, h and k that makes this augmented matrix correspond to consistent system:
$\left[\begin{array}{cccc}1 & -4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k\end{array}\right]$
Answer:
7. The solution set is empty 9. $(4,8,5,2)$ 11. Inconsistent.
13. $(5,3,-1)$
25. $k+2 g+h=0$.

