1 6.1

Definition 1.1 The inner product or dot product between two vectors x =

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots x_n \end{bmatrix} \text{ and } y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots y_n \end{bmatrix} \text{ is }$$

$$x \cdot y = x^T y = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots & y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.$$

The length of the vector is $||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$. The distance between two vectors is

$$dist(x,y) = ||x-y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

We have the following properties of the dot product and the length.

Theorem 1.1 $(a)x \cdot y = y \cdot x$.

- (b) $x \cdot x > 0$ if $x \neq 0$.
- (c) $x \cdot (y+z) = x \cdot y + x \cdot z$.
- (d) ||ax|| = |a|||x|| where a is a number and $x \in \mathbb{R}^n$.

Example 1 Let
$$u = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$. Find $u \cdot v$, $||u||$, $||v||^2$ and $||u+v||^2$.

Solution: Compute
$$u \cdot v = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = 2 - 2 + 2 = 2, \ ||u|| = \sqrt{u \cdot u} = 2$$

$$\sqrt{\begin{bmatrix} 2\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 2\\1\\1 \end{bmatrix}} = \sqrt{4+1+1} = \sqrt{6}. \ ||v||^2 = v \cdot v = \begin{bmatrix} 1\\-2\\2 \end{bmatrix} \cdot \begin{bmatrix} 1\\-2\\2 \end{bmatrix} = 1+4+4 = \sqrt{6}.$$

9. To find
$$||u+v||^2$$
, we first compute $u+v=\begin{bmatrix} 2\\1\\1 \end{bmatrix}+\begin{bmatrix} 1\\-2\\2 \end{bmatrix}=\begin{bmatrix} 2+1\\1-2\\1+2 \end{bmatrix}=\begin{bmatrix} 3\\-1\\3 \end{bmatrix}$. Then $||u+v||^2=(u+v)\cdot(u+v)=\begin{bmatrix} 3\\-1\\3 \end{bmatrix}\cdot\begin{bmatrix} 3\\-1\\3 \end{bmatrix}=9+1+9=19$.

Definition 1.2 Two vectors are called orthogonal if $x \cdot y = 0$.

From Pythahorean Theorem, we know that the x is perpendicular to the vector y iff $||x||^2 + ||y||^2 = ||x+y||^2$. We can simplify $||x+y||^2 = (x+y) \cdot (x+y) = x \cdot (x+y) + y \cdot (x+y) = x \cdot x + x \cdot y + y \cdot x + y \cdot y = ||x||^2 + ||y||^2 + 2x \cdot y$ (use $x \cdot y = y \cdot x$). Thus $||x||^2 + ||y||^2 = ||x+y||^2$ is the same as $||x||^2 + ||y||^2 = ||x||^2 + ||y||^2 + 2x \cdot y$. This implies that $2x \cdot y = 0$ and $x \cdot y = 0$. Thus we have the following theorem

Theorem 1.2 x is perpendicular to the vector y iff x is orthogonal to the vector y iff $x \cdot y = 0$.

Example 2 Determine which pairs of vectors are orthogonal.

$$1.a = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$2.u = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \text{ and } v = \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}.$$

Solution: 1^0 Compute $a \cdot b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -2 + 1 = -1 \neq 0$. So a is not orthogonal to b.

1º Compute
$$u \cdot v = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix} = -6 + 2 + 4 = 0 \neq 0$$
. So u is orthogonal to v .

Next we define the notion of orthogonal complement.

Definition 1.3 The set of all vectors z that are orthogonal to a subspace W in \mathbb{R}^n is called the orthogonal complement of W and is denoted by W^{\perp} ,

$$W^{\perp} = \{ z \in R^n | z \cdot y = 0, \text{ for every } y \in W \}$$

.

Example 3 What is W^{\perp} if $W = Span\{u_1, u_2, \dots, u_p\}$?

Solution: $W^{\perp} = \{ z \in R^n | z \cdot u_1 = 0, z \cdot u_2 = 0, \dots, z \cdot u_p = 0 \}.$

Example 4

Let $W = Span\{\begin{bmatrix} 2\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\2 \end{bmatrix}\}$. Describe the subspace W^{\perp} and find a basis for W^{\perp} .

Solution:
$$W^{\perp} = \{x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in R^3 | x \cdot \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = 0, z \cdot \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = 0 \}$$

$$= \{x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in R^3 | 2x_1 + 2x_2 + x_3 = 0, x_1 - 2x_2 + 2x_3 = 0 \}.$$

Consider the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$. So $W^{\perp} = Nul(A)$. $\begin{bmatrix} 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix} \widetilde{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & -2 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ $r_2 := \widetilde{r_2 + (-2)}r_1\begin{bmatrix} 1 & -2 & 2 \\ 0 & 6 & -3 \end{bmatrix}r_2 := r_2/6\begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & -1/2 \end{bmatrix}$ $r_1 := \widetilde{r_1 + 2}r_2\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1/2 \end{bmatrix}$. So $x_1 + x_3 = 0$ and $x_2 - x_3/2 = 0$. So $x_1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_3/2 \\ x_3 \end{bmatrix} = x_3\begin{bmatrix} -1 \\ 1/2 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} -1 \\ 1/2 \\ 1 \end{bmatrix}$ is a basis for W^{\perp} .

2 6.2 Orthogonal sets

Definition 2.1 An set of nonzero vectors $\{u_1, u_2, \dots, u_p\}$ is called an orthogonal set if $u_i \cdot u_j = 0$ whenever $1 \le i \ne j \le p$.

Definition 2.2 An orthogonal basis $\{u_1, u_2, \dots, u_p\}$ for a subspace W is a basis that is also orthogonal, i.e. $u_i \cdot u_j = 0$ whenever $1 \le i \ne j \le p$.

Theorem 2.1 If $\mathfrak{B} = \{u_1, u_2, \cdots, u_p\}$ is an orthogonal basis for a subspace W and $y \in W$, then $y = c_1u_1 + \cdots + c_pu_p$ where $c_1 = \frac{y \cdot u_1}{u_1 \cdot u_1}$, $c_2 = \frac{y \cdot u_2}{u_2 \cdot u_2}$, \cdots ,

$$c_p = \frac{y \cdot u_p}{u_p \cdot u_p}. \text{ This implies that the coordinate vector } [y]_{\mathfrak{B}} = \begin{bmatrix} \frac{y \cdot u_1}{u_1 \cdot u_1} \\ \frac{y \cdot u_2}{y \cdot u_2} \\ \vdots \\ \frac{y \cdot u_p}{u_p \cdot u_p} \end{bmatrix}.$$

Example 5 Show that $\{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 where $u_1 =$ $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Also express $x = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$ as a linear $\overline{combination}$ of $\{u_1, u_2, u_3\}$.

Solution: 1º We need to compute $u_1 \cdot u_2$, $u_1 \cdot u_3$ and $u_2 \cdot u_3$.

Compute
$$u_1 \cdot u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix} = -1 + 0 + 1 = 0, \ u_1 \cdot u_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\$$

$$2+0-2=0$$
 and $u_2 \cdot u_3 = \begin{bmatrix} -1\\4\\1 \end{bmatrix} \cdot \begin{bmatrix} 2\\1\\-2 \end{bmatrix} = -2+4-2=0$. So we have

 $u_1 \cdot u_2 = 0$, $u_1 \cdot u_3 = 0$ and $u_2 \cdot u_3 = 0$. Hence $\{u_1, u_2, u_3\}$ is an orthogonal basis for R^3 .

2º From previous Theorem, we know that $x = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \frac{x \cdot u_3}{u_3 \cdot u_3} u_3 + \frac{x \cdot u_3}{u_3} u_3 + \frac{x \cdot u_3}{u_$

Now we compute
$$x \cdot u_1 = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 8 + 0 - 3 = 5, \ u_1 \cdot u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 1 + 0 + 1 = 2, \ x \cdot u_2 = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix} = -8 - 16 - 3 = -27, \ u_2 \cdot u_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\$$

$$1+0+1=2, \ x\cdot u_2=\begin{bmatrix} 8\\-4\\-3\end{bmatrix}\cdot \begin{bmatrix} -1\\4\\1\end{bmatrix}=-8-16-3=-27, \ u_2\cdot u_2=0$$

$$\begin{bmatrix} -1\\4\\1 \end{bmatrix} \cdot \begin{bmatrix} -1\\4\\1 \end{bmatrix} = 1 + 16 + 1 = 18, \ x \cdot u_3 = \begin{bmatrix} 8\\-4\\-3 \end{bmatrix} \cdot \begin{bmatrix} 2\\1\\-2 \end{bmatrix} = 16 - 4 + 6 = 18 \text{ and}$$

$$u_3 \cdot u_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = 4 + 1 + 4 = 9. \text{ Using } x = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \frac{x \cdot u_3}{u_3 \cdot u_3} u_3,$$

Remark: One can verify that

$$\frac{5}{2}u_1 - \frac{3}{2}u_2 + 2u_3$$

$$= \frac{5}{2} \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} -1\\4\\1 \end{bmatrix} + 2 \begin{bmatrix} 2\\1\\-2 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} + \frac{3}{2} + 4\\0 - 6 + 2\\\frac{5}{2} - \frac{3}{2} - 4 \end{bmatrix} = \begin{bmatrix} 8\\-4\\-3 \end{bmatrix}$$

$$= x$$
(2.1)

Definition 2.3 An set of nonzero vectors $\{u_1, u_2, \dots, u_p\}$ is called an orthonormal set if

- (a) it is an orthogonal set, i.e. $u_i \cdot u_j = 0$ whenever $1 \le i \ne j \le p$.
- (b) each u_i is a unit vector, i.e. $||u_1|| = ||u_2|| = \cdots = ||u_p|| = 1$.

Remark: Given am orthogonal set $\{u_1, u_2, \cdots, u_p\}$. Then we can normalize it to get an orthonormal set $\{\frac{u_1}{||u_1||}, \frac{u_2}{||u_2||}, \cdots, \frac{u_p}{||u_p||}\}$.

Example 6 Normalize the following orthogonal set to get an orthonormal set. $u_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $u_2 = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$.

Solution: We can verify that $u_1 \cdot u_2 = 0$. Compute $||u_1|| = \sqrt{3^2 + 4^2} = 5$ and $||u_2|| = \sqrt{4^2 + (-3)^2} = 5$.

So
$$\left\{\frac{u_1}{||u_1||}, \frac{u_2}{||u_2||}\right\} = \left\{\frac{u_1}{5}, \frac{u_2}{5}\right\} = \left\{\begin{bmatrix}\frac{3}{5}\\\frac{4}{5}\end{bmatrix}, \begin{bmatrix}\frac{4}{5}\\-\frac{3}{5}\end{bmatrix}\right\}$$
 is an orthonormal set.

3 6.3 Orthogonal projection

Given a vector $y \in \mathbb{R}^3$ and a plane W thru the origin. We can decompose the vector y into two vectors \widehat{y} and z such that \widehat{y} is the projection of y onto the subspace W and $z \in W^{\perp}$. This can be generalized to the following orthogonal projection Theorem. First, we define the notion of orthogonal projection.

Definition 3.1 Suppose $W = Span\{u_1, u_2, \cdots, u_p\}$ and $\{u_1, u_2, \cdots, u_p\}$ is an orthogonal basis for the subspace W. Then given any vector $y \in \mathbb{R}^n$. The vector $\widehat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$ is called the orthogonal projection of y onto the subspace W. We also write $\widehat{y} = Proj_W(y)$.

Note that a vector $y \in W$ iff $y = Proj_W(y)$.

Theorem 3.1 (Orthogonal projection Theorem) Suppose $W = Span\{u_1, u_2, \cdots, u_p\}$ and $\{u_1, u_2, \cdots, u_p\}$ is an orthogonal basis for the subspace W. Any vector $y \in R^n$ can be written uniquely as $y = Proj_W(y) + z$ where $Proj_W(y) = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p \in W$ and $z = y - Proj_W(y) \in W^{\perp}$.

Remark. To use this theorem, we need to make sure that $\{u_1, u_2, \dots, u_p\}$ is an orthogonal basis for the subspace W.

Example 7 Let
$$W = Span\{u_1, u_2\}$$
 where $u_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$. Write

 $y = \begin{bmatrix} 2 \\ 3 \\ \epsilon \end{bmatrix}$ as a sum of a vector in W and a vector orthogonal to W.

Solution. First, we compute
$$u_1 \cdot u_2 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} = 5 + 3 - 8 = 0.$$

So $\{u_1, u_2\}$ is an orthogonal basis for the subspace W. By the Orthogonal projection Theorem, we can write $y = Proj_W(y) + z$ where $Proj_W(y) =$ $\frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 \in W$ and $z = y - Proj_W(y) \in W^{\perp}$. We need to compute

$$y \cdot u_1 = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} = 2 + 9 - 10 = 1, \ u_1 \cdot u_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} = 1 + 9 + 4 = 14,$$

$$y \cdot u_2 = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} = 10 + 3 + 20 = 33, \ u_2 \cdot u_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} = 25 + 45$$

$$1 + 16 = 42. \text{ So } Proj_W y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{1}{14} u_1 + \frac{33}{42} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33}{14} u_2 = \frac{1}{14} u_1 + \frac{33}{14} u_1 + \frac{33$$

$$\begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \\
1 + 16 = 42. \text{ So } Proj_W y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{1}{14} u_1 + \frac{33}{42} u_2 = \frac{1}{14} u_1 + \frac{11}{4} u_2 = \frac{1}{14} \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} + \frac{11}{14} \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{14} + \frac{55}{14} \\ \frac{3}{14} + \frac{11}{14} \\ \frac{-2}{14} + \frac{44}{14} \end{bmatrix} = \begin{bmatrix} \frac{56}{14} \\ \frac{3}{14} + \frac{11}{14} \\ \frac{-2}{14} + \frac{44}{14} \end{bmatrix} \begin{bmatrix} \frac{56}{14} \\ \frac{14}{14} \\ \frac{-2}{14} \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

and
$$z = y - Proj_W(y) = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 2 \end{bmatrix}$$
. So $y = Proj_W y + z$ where

$$Proj_W(y) = \begin{bmatrix} 4\\1\\3 \end{bmatrix}$$
 and $z = \begin{bmatrix} -2\\2\\2 \end{bmatrix} \in W^{\perp}$. We can verify that $Proj_W(y) \cdot z = \begin{bmatrix} -2\\2\\2 \end{bmatrix}$

$$\begin{bmatrix} 4\\1\\3 \end{bmatrix} \cdot \begin{bmatrix} -2\\2\\2 \end{bmatrix} = -8 + 2 + 6 = 0.$$