Solution to Linear Algebra (Math 2890) Review Problems II

1. (a) What is a subspace in \mathbb{R}^n ?

Solution: A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that satisfies the following three properties. (I) The zero vector is in H. (II) For each u and v in H, then u + v is in H. (III) For each u in H and each scalar c, the vector cu is in H.

(b) Is the set $\{(x, y, z)|x + y + z = 1\}$ a subspace? Solution: This is not a subspace since the zero vector (0, 0, 0) is not in the set.

(c) Is the set $\{(x, y, z)|x - y - z = 0, x + y - z = 0\}$ a subspace? Solution: Yes. This is a subspace. This can be regarded as the nullspace of the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$.

Here
$$Nul(A) = \{(x, y, z) | \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \}.$$

(d) What is a basis for a subspace?

Solution: A basis for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

(e) What is the dimension of a subspace?

Solution: The dimension of a nonzero subspace H is the number of vectors in any basis for H.

(f) What is the column space of a matrix? Solution: The column space of a matrix A is the set of the span of the column vectors of A.

(g) What is the null space of a matrix?

Solution: The null space of a matrix A is the set of all solutions to the homogeneous equation Ax = 0, i.e. $Nul(A) = \{x | Ax = 0\}$.

(h) What is an eigenvalue of a matrix A?

Solution: Let A be a $n \times n$ matrix. A scalar λ such that $Ax = \lambda x$ for some $x \neq 0$ is called an eigenvalue and the corresponding vector is called an eigenvector.

(i) What is an eigenvector of a matrix A?

Solution: Let A be a $n \times n$ matrix. A scalar λ such that $Ax = \lambda x$ for some $x \neq 0$ is called an eigenvalue and the corresponding vector is called an eigenvector.

(j) What is the characteristic polynomial of a matrix A? Solution: The polynomial $det(A - \lambda I)$ is the the characteristic polynomial of a matrix A.

(k) What is the subspace spanned by the vectors v_1, v_2, \dots, v_p ? Solution: The subspace spanned by v_1, v_2, \dots, v_p is the set of all possible linear combination of v_1, v_2, \dots, v_p , i.e. $Span\{v_1, \dots, v_n\} = \{c_1v_1 + c_2v_2 + \dots + c_pv_p | c_1, c_2, \dots, c_p \text{ are real numbers}\}$

2. Find the inverses of the following matrices if they exist.

$$A = \begin{bmatrix} 7 & -2 \\ -4 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$

Solution: (a) Since $det(A) = -1$, we have $A^{-1} = \frac{1}{-1} \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ -4 & -7 \end{bmatrix}$
(b)

$$\begin{bmatrix} 1 & -1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 1 & 0 & 0 & | & 0 & 0 & 1 \end{bmatrix} \overrightarrow{r_1 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 1 & -1 & 1 & | & 1 & 0 & 0 \end{bmatrix}$$
$$r_2 := r_2 + (-1)\overrightarrow{r_1}, \overrightarrow{r_3} := r_3 + (-1)r_1 \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 1 & -1 \\ 0 & -1 & 1 & | & 0 & -1 \end{bmatrix}$$
$$\overrightarrow{r_3 := \overrightarrow{r_3} + r_2} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 1 & -1 \\ 0 & 0 & 2 & | & 1 & -2 \end{bmatrix}$$
$$\overrightarrow{r_3 := \overrightarrow{r_3}} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 1 & -1 \\ 0 & 0 & 2 & | & 1 & -2 \end{bmatrix}$$
$$\overrightarrow{r_3 := \overrightarrow{r_3}} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 1 & -1 \\ 0 & 0 & 1 & | & \frac{1}{2} & \frac{1}{2} & -1 \end{bmatrix}$$
$$r_2 := \overrightarrow{r_2 + (-1)r_3} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 0 & | & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & | & \frac{1}{2} & \frac{1}{2} & -1 \end{bmatrix}$$

So
$$B^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -1 \end{bmatrix}$$
.
(c)

$$\begin{bmatrix} 2 & 3 & 4 & | & 1 & 0 & 0 \\ 5 & 6 & 7 & | & 0 & 1 & 0 \\ 8 & 9 & 10 & | & 0 & 0 & 1 \end{bmatrix} \overrightarrow{r_2 := r_2 - 2r_1} \begin{bmatrix} 2 & 3 & 4 & | & 1 & 0 & 0 \\ 1 & 0 & -1 & | & -2 & 1 & 0 \\ 8 & 9 & 10 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\overrightarrow{r_2 \longleftrightarrow r_1} \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 2 & 3 & 4 & | & 1 & 0 & 0 \\ 8 & 9 & 10 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\overrightarrow{r_2 := r_2 - 2r_1, r_3 := r_3 - 8r_1} \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 0 & 3 & 6 & | & 3 & -1 & 0 \\ 0 & 9 & 18 & | & 16 & -8 & 1 \end{bmatrix}$$
$$\overrightarrow{r_3 := r_3 + (-3)r_2} \begin{bmatrix} 1 & 0 & -1 & | & -2 & 1 & 0 \\ 0 & 3 & 6 & | & 3 & -1 & 0 \\ 0 & 3 & 6 & | & 3 & -1 & 0 \\ 0 & 0 & 0 & | & 7 & -5 & 1 \end{bmatrix}$$

So ${\cal C}$ only has one free variable (or two pivot vectors) and ${\cal C}$ is not invertible.

$$(d) \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & | & 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_3 := r_3 + (-2)\tilde{r_1, r_4} := r_4 + (-1)r_1 \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & | & -2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & | & -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$r_3 := r_3 + (-3)\tilde{r_2, r_4} := r_4 + (-2)r_2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & | & -2 & -3 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$So$$

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -3 & 1 & 0 \\ -1 & -2 & 0 & 1 \end{bmatrix}.$$

- 3. (a) Let A be an 3×3 matrix. Suppose $A^3 + 2A^2 3A + 4I = 0$. Is A invertible? Express A^{-1} in terms of A if possible. Solution: From $A^3 + 2A^2 - 3A + 4I = 0$, we have $A^3 + 2A^2 - 3A = -4I$, $A(A^2 + 2A - 3I) = -4I$ and $A \cdot (-\frac{1}{4}(A^2 + 2A - 3I)) = I$. So $A^{-1} = -\frac{1}{4}(A^2 + 2A - 3I)$. (b) Suppose $A^3 = 0$. Is A invertible? Solution: If A is invertible then $A^{-2}A^3 = A^{-2}0$ and A = 0 which is not invertible. So A is not invertible.
- 4. Describe the values of t so that the following matrices are invertible

	Г1	1	ი T		0	1	0	t	
M =		$ \begin{array}{ccc} 1 & 2\\ t+1 & 3\\ t & t+1 \end{array} $	1.4	-1	0	t	0		
			3	and $A =$	0	-t	0	1	
	Γī	t	t+1		-t	0	-1	0	

Solution:

(a)

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 1 & t+1 & 3 \\ 1 & t & t+1 \end{bmatrix} r_2 := r_2 + (-1)r_1, r_3 := r_3 + (-1)r_1 \begin{bmatrix} 1 & 1 & 2 \\ 0 & t & 1 \\ 0 & t-1 & t-1 \end{bmatrix}$$
$$r_3 := \underbrace{1}_{t-1}r_3 \quad if \ t-1 \neq 0, r_2 \leftrightarrow r_3 \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & t & 1 \end{bmatrix} r_3 := \widetilde{r_3 + (-t)}r_2 \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1-t \end{bmatrix}$$

Thus M is invertible if $t \neq 1$.

$$A = \begin{bmatrix} 0 & 1 & 0 & t \\ -1 & 0 & t & 0 \\ 0 & -t & 0 & 1 \\ -t & 0 & -1 & 0 \end{bmatrix} interchange 1st and 2nd row, r_1 := (-1)r_1 \begin{bmatrix} 1 & 0 & -t & 0 \\ 0 & 1 & 0 & t \\ 0 & -t & 0 & 1 \\ -t & 0 & -1 & 0 \end{bmatrix}$$
$$r_4 := \widetilde{r_4 + t} \cdot r_1 \begin{bmatrix} 1 & 0 & -t & 0 \\ 0 & 1 & 0 & t \\ 0 & -t & 0 & 1 \\ 0 & 0 & -1 - t^2 & 0 \end{bmatrix} r_3 := \widetilde{r_3 + t} \cdot r_2 \begin{bmatrix} 1 & 0 & -t & 0 \\ 0 & 1 & 0 & t \\ 0 & 0 & 0 & 1 + t^2 \\ 0 & 0 & -1 - t^2 & 0 \end{bmatrix}$$
$$r_3 := \frac{1}{1 + t^2} r_3, r_4 := \frac{-1}{1 + t^2} r_4, r_3 \leftrightarrow r_4 \begin{bmatrix} 1 & 0 & -t & 0 \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Thus A has no free variable (or four pivot vectors) and A is invertible for all t. Note that we have used the fact that $1 + t^2 \neq 0$ in the computation.

(b)

5. Find all values of a and b so that the subspace of \mathbb{R}^4 spanned by $\left\{ \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} b\\1\\-a\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\0\\0 \end{bmatrix} \right\}$ is two-dimensional.

Solution: Consider the matrix $A = \begin{bmatrix} 0 & b & -2 \\ 1 & 1 & 2 \\ 0 & -a & 0 \\ -1 & 1 & 0 \end{bmatrix}$ interchange first row and second row $\begin{bmatrix} 1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ -1 & 1 & 0 \end{bmatrix}$ $r_4 := r_1 + r_4 \begin{bmatrix} 1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ 0 & 2 & 2 \end{bmatrix}$

$$\begin{split} & \overbrace{interchange\ second\ row\ and\ forth\ row}} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -a & 0 \\ 0 & b & -2 \end{bmatrix} \\ & \overbrace{interchange\ second\ row\ by\ 2}} \underbrace{ \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -a & 0 \\ 0 & b & -2 \end{bmatrix} } r_3 := r_3 + \widehat{ar_2, r_4} := r_4 - br_2 \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & a \\ 0 & 0 & -2 - b \end{bmatrix}. \end{split}$$

Now the first and second vectors are pivot vectors. So rank(A) = 2 if a = 0 and -2 - b = 0. So a = 0 and b = -2

6. Let $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \}$. You can assume that \mathcal{B} is a basis for \mathbb{R}^3

(a) Which vector x has the coordinate vector $[x]_B = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.

Let
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
. So $x = A[x]_B = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 - 3 + 0 \\ 0 - 2 + 0 \\ 0 - 1 + 4 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 3 \end{bmatrix}$

(b) Find the β -coordinate vector of $y = \begin{bmatrix} 2\\ -2\\ 3 \end{bmatrix}$. Solution. We have to solve $Ax = \begin{bmatrix} 2\\ -2\\ 3 \end{bmatrix}$. $\begin{bmatrix} 1 & 3 & 0 & 2\\ 0 & 2 & 0 & -2\\ 0 & 1 & 2 & 3 \end{bmatrix} \widetilde{r_2 := \frac{1}{2}r_2} \begin{bmatrix} 1 & 3 & 0 & 2\\ 0 & 1 & 0 & -1\\ 0 & 1 & 2 & 3 \end{bmatrix} r_2 := r_3 - r_2 \begin{bmatrix} 1 & 3 & 0 & 2\\ 0 & 1 & 0 & -1\\ 0 & 0 & 2 & 4 \end{bmatrix}$

$$\widetilde{r_3 := \frac{1}{2}r_3} \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \widetilde{r_1 := r_1 - 3r_2} \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

So $[y]_B = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}.$

7. Let

$$M = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$$

Find bases for Col(M) and Nul(M), and then state the dimensions of these subspaces

Solution:
$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix} r_2 := -r_1 + \widetilde{r_2, r_3} := -r_2 + r_3 \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 2 \end{bmatrix}$$

 $r_3 := -2r_2 + r_3 \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} r_1 := -2r_2 + r_3 \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
So the first two vectors are pivot vectors and $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$ is a basis
for $Col(A)$ and $dim(Col(A)) = 2$.
The solution to $Mx = 0$ is $x_1 + x_3 - x_4 = 0$ and $x_2 + 2x_3 + x_4 = 0$. So
 $x = \begin{bmatrix} -x_3 + x_4 \\ -2x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$. Hence the basis for $Nul(M)$
is $\left\{ \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}$ and $dim(Nul(M)) = 2$.

8. Find a basis for the subspace spanned by the following vectors $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-4\\-2 \end{bmatrix} \right\}$. What is the dimension of the subspace?

Solution: Consider the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ $r_2 := r_2 - \widetilde{r_1, r_3} := r_3 - r_1 \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & -3 \\ 0 & -1 & -1 \end{bmatrix}$ $\widetilde{r_2 := r_2/(-3)} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} r_3 := \widetilde{r_3} + r_2 \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. So the first two vectors are pivot vectors and $\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \}$ is a basis. The dimension of the subspace is 2.

- 9. Determine which sets in the following are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify your answer
 - (a) $\begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ -4 \end{bmatrix}$. Solution: Since $\begin{bmatrix} 2\\ -4 \end{bmatrix} = -2\begin{bmatrix} -1\\ 2 \end{bmatrix}$, the set $\{\begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ -4 \end{bmatrix}\}$ is dependent. It is not a basis. (b) $\begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix}$. Yes. This set forms a basis since they are independent and span R^3 . (c) $\begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$. This is not a basis since it doesn't span R^3 . (d) $\begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ \end{bmatrix}$. This set forms a basis since they are independent and span R^3 . (e) $\begin{bmatrix} -1\\ 2\\ 1\\ \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 0\\ \end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 0\\ \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 3\\ \end{bmatrix}$. This is not a basis since it is dependent.

10. Let A be the matrix

$$A = \begin{bmatrix} -3 & -4 \\ -4 & 3 \end{bmatrix}.$$

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues and a basis of eigenvectors for A.
- (c) Diagonalize the matrix A if possible.
- (d) Find a polynomial P(A) in A such that P(A) = 0. Verify your answer.
- (e) Find the formula for A^k where k is an positive integer. Solution: 1. $A - \lambda I = \begin{bmatrix} -3 - \lambda & -4 \\ -4 & 3 - \lambda \end{bmatrix}$. So $det(A - \lambda I) = (-3 - \lambda)(3 - \lambda) - 16 = \lambda^2 - 9 - 16 = \lambda^2 - 25 = (\lambda - 5)(\lambda + 5)$

So the characteristic equation is $(\lambda - 5)(\lambda + 5) = 0$.

2. Solving the characteristic equation $(\lambda - 5)(\lambda + 5) = 0$, we get that the eigenvalues are $\lambda = 5$ and $\lambda = -5$.

3. When
$$\lambda = 5$$
, we have
 $A - \lambda I = \begin{bmatrix} -3 - 5 & -4 \\ -4 & 3 - 5 \end{bmatrix} = \begin{bmatrix} -8 & -4 \\ -4 & 2 \end{bmatrix} r_2 := r_2 - r_1/2 = \begin{bmatrix} -8 & -4 \\ 0 & 0 \end{bmatrix}$
 $\widetilde{r_1 := -r_1/8} = \begin{bmatrix} 1 & 1/2 \\ 0 & 0 \end{bmatrix}$.

The solution of (A-5I)x = 0 is $x_1 + x_2/2 = 0$, i.e. and $x_1 = -x_2/2$ So $Null(A - I) = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2/2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} \right\}$. We can choose $x_2 = 2$ to get $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ which is a basis for the

eigenspace corresponding to eigenvalue 5.

4. When
$$\lambda = -5$$
, we have
 $A - \lambda I = \begin{bmatrix} -3+5 & -4 \\ -4 & 3+5 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ -4 & 8 \end{bmatrix} \widetilde{r_1 := r_1/2} \begin{bmatrix} 1 & -2 \\ -4 & 8 \end{bmatrix}$
 $\widetilde{r_2 := r_2 + 4r_1} \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$.

The solution of (A + 5I)x = 0 is $x_1 - 2x_2 = 0$, i.e. and $x_1 = 2x_2$ So $Null(A - I) = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}.$

The basis for the eigenspace corresponding to eigenvalue -5 is $\left\{ \begin{vmatrix} 2 \\ 1 \end{vmatrix} \right\}.$ Let $P = \begin{bmatrix} -1 & 2\\ 2 & 1 \end{bmatrix}$. Then $P^{-1} = \frac{1}{-5} \begin{bmatrix} 1 & -2\\ -2 & -1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} & \frac{2}{5}\\ \frac{2}{5} & \frac{1}{5} \end{bmatrix}$. So $A = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} -\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix}$ and $A^k = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5^k & 0 \\ 0 & (-5)^k \end{bmatrix} \begin{bmatrix} -\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix}$. $\begin{array}{l} & \sum_{A} (A) = (A - 5)(A + 5) = \lambda^2 - 25. \quad \text{Let } P(A) = A^2 - 25I. \\ & \text{Then } A^2 - 25I = 0. \quad \text{One can verify this by checking } A^2 = \\ & \begin{bmatrix} -3 & -4 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} -3 & -4 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} = 25 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 25I. \quad \text{Hence} \\ & A^2 - 25I = 0. \end{array}$ Let $P(\lambda) = (\lambda - 5)(\lambda + 5) = \lambda^2 - 25$. Let $P(A) = A^2 - 25I$. 11. Let A be the matrix $\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix}$. (a) Prove that $det(A - \lambda I) = -(\lambda - 1)^2(\lambda - 4)$. (b) Find the eigenvalues and a basis of eigenvectors for A. (c) Diagonalize the matrix A if possible. (d) Find the matrix exponential e^A . Solution. a. 1. $A - \lambda I = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{bmatrix}$. So $det(A - \lambda I) = (2 - \lambda)^3 + 1 + 1 - (2 - \lambda) - (2 - \lambda) - (2 - \lambda) = (4 - 4\lambda + \lambda^2)(2 - \lambda) + 2 - 6 + 3\lambda = 8 - 8\lambda + 2\lambda^2 - 4\lambda + 4\lambda^2 - \lambda^3 - 4 + 3\lambda$ = $-\lambda^3 + 6\lambda^2 - 9\lambda + 4 = -(\lambda - 1)^2(\lambda - 4)$. So the characteristic equation is $-(\lambda - 1)^2(\lambda - 4) = 0.$ 2. Solving the characteristic equation $-(\lambda - 1)^2(\lambda - 4) = 0$, we get that the eigenvalues are $\lambda = 1$ and $\lambda = 4$.

3. When
$$\lambda = 1$$
, we have

$$A - \lambda I = \begin{bmatrix} 2 - 1 & 1 & 1 \\ 1 & 2 - 1 & 1 \\ 1 & 1 & 2 - 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} r_1 := r_2 - \widetilde{r_1, r_3} := r_3 - r_1 \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solution of (A - I)x = 0 is $x_1 + x_2 + x_3 = 0$ and $x_1 = -x_2 - x_3$ So

$$Null(A - I) = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$

4. When
$$\lambda = 4$$
, we have

$$A - \lambda I = \begin{bmatrix} 2-4 & 1 & 1 \\ 1 & 2-4 & 1 \\ 1 & 1 & 2-4 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
interchange 1st row and 2nd row = $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$

$$r_2 := r_2 + 2r_1, r_3 := r_3 - r_1 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix} r_2 := r_2/3, r_2 : r_2 + r_3 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix}$$

$$r_2 := r_1 + 2r_2 = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution of (A - 4I)x = 0 is $x_1 - x_3 = 0$ and $x_2 - x_3 = 0$. This implies that $x_1 = x_3, x_2 = x_3$ and x_3 is free. So $Null(A - I) = \{ \begin{bmatrix} x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \}.$

The basis for the eigenspace corresponding to eigenvalue 4 is $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ } So A is diagonalizable with $A = PDP^{-1}$ where $P = \begin{bmatrix} -1 & -1 & 1\\1 & 0 & 1\\0 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$ Also $e^A = Pe^D P^{-1} = P \begin{bmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e^4 \end{bmatrix} P^{-1}.$ 12. Let *B* be the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$ (a) Find the characteristic equation of A. Solution: $B - \lambda I = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{bmatrix}.$ So $det(B - \lambda I) = (2 - \lambda)^2(1 - \lambda)$. The characteristic equation of A is $(2 - \lambda)^2(1 - \lambda) = 0.$

(b) Find the eigenvalues and a basis of eigenvectors for B. Solving $(2 - \lambda)^2(1 - \lambda) = 0$, we know that the eigenvalues of B are $\lambda = 2$ and $\lambda = 1$.

When
$$\lambda = 2$$
, we have

$$B - \lambda I = \begin{bmatrix} 2-2 & 1 & 1 \\ 0 & 2-2 & 1 \\ 0 & 0 & 1-2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$r_2 := r_2 + \widetilde{r_3, r_1} := r_1 + r_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solution of (B - 2I)x = 0 is $x_2 = 0$, $x_3 = 0$ and x_1 is free. So $Null(B - 2I) = \left\{ \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$

The basis for the eigenspace corresponding to eigenvalue 2 is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$. When $\lambda = 1$, we have

$$B - \lambda I = \begin{bmatrix} 2 - 1 & 1 & 1 \\ 0 & 2 - 1 & 1 \\ 0 & 0 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$r_1 := r_1 - r_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solution of (B - I)x = 0 is $x_1 = 0$ and $x_2 + x_3 = 0$ So $x_1 = 0$, $x_2 = -x_3$ and x_3 is free. $Null(B - I) = \left\{ \begin{bmatrix} 0\\ -x_3\\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} \right\}$. The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{ \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} \right\}$. So $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue 2 and $\begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue 1 (c) Find a polynomial P(B)in B such that P(B) = 0. Verify your answer. From (a), we have $p(\lambda) = det(B - \lambda I) = (2 - \lambda)^2(1 - \lambda) = -(\lambda - 2)^2(\lambda - 1)$. Then $P(B) = -(B - 2I)^2(B - I) = 0$. We can verify this by computing $B - 2I = \begin{bmatrix} 0 & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & -1 \end{bmatrix}$, $B - I = \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{bmatrix}$ and $-(B - 2I)^2(B - I) = \begin{bmatrix} 0 & 1 & 1\\ 0 & 0 & -1\\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1\\ 0 & 0 & 1\\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$.

(d) Diagonalize the matrix B if possible.

From (b), we know that B has only two independent eigenvectors and B is not diagonzalizable.