Solution to Linear Algebra (Math 2890) Review Problems II

1. (a) What is a subspace in R^{n} ?

Solution: A subspace of R^{n} is any set H in R^{n} that satisfies the following three properties. (I) The zero vector is in H. (II) For each u and v in H, then $u+v$ is in H. (III) For each u in H and each scalar c, the vector $c u$ is in H.
(b) Is the set $\{(x, y, z) \mid x+y+z=1\}$ a subspace?

Solution: This is not a subspace since the zero vector $(0,0,0)$ is not in the set.
(c) Is the set $\{(x, y, z) \mid x-y-z=0, x+y-z=0\}$ a subspace?

Solution: Yes. This is a subspace. This can be regarded as the nullspace of the matrix $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1\end{array}\right]$.
Here $\operatorname{Nul}(A)=\left\{(x, y, z) \left\lvert\,\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0\right.\right\}$.
(d) What is a basis for a subspace?

Solution: A basis for a subspace H of R^{n} is a linearly independent set in H that spans H.
(e) What is the dimension of a subspace?

Solution:The dimension of a nonzero subspace H is the number of vectors in any basis for H.
(f) What is the column space of a matrix?

Solution: The column space of a matrix A is the set of the span of the column vectors of A.
(g) What is the null space of a matrix?

Solution:The null space of a matrix A is the set of all solutions to the homogeneous equation $A x=0$, i.e. $\operatorname{Nul}(A)=\{x \mid A x=0\}$.
(h) What is an eigenvalue of a matrix A ?

Solution: Let A be a $n \times n$ matrix. A scalar λ such that $A x=\lambda x$ for some $x \neq 0$ is called an eigenvalue and the corresponding vector is called an eigenvector.
(i) What is an eigenvector of a matrix A ?

Solution: Let A be a $n \times n$ matrix. A scalar λ such that $A x=\lambda x$ for some $x \neq 0$ is called an eigenvalue and the corresponding vector is called an eigenvector.
(j) What is the characteristic polynomial of a matrix A ?

Solution: The polynomial $\operatorname{det}(A-\lambda I)$ is the the characteristic polynomial of a matrix A.
(k) What is the subspace spanned by the vectors $v_{1}, v_{2}, \cdots, v_{p}$? Solution: The subspace spanned by $v_{1}, v_{2}, \cdots, v_{p}$ is the set of all possible linear combination of $v_{1}, v_{2}, \cdots, v_{p}$, i.e. $\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}=$ $\left\{c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p} \mid c_{1}, c_{2}, \cdots, c_{p}\right.$ are real numbers $\}$
2. Find the inverses of the following matrices if they exist.

$$
A=\left[\begin{array}{cc}
7 & -2 \\
-4 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right], C=\left[\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right] \text { and } D=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 3 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right]
$$

Solution: (a) Since $\operatorname{det}(A)=-1$, we have $A^{-1}=\frac{1}{-1}\left[\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}\right]=\left[\begin{array}{ll}-1 & -2 \\ -4 & -7\end{array}\right]$
(b)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] r_{1} \underset{\sim}{\longleftrightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & -1 & 1 & 1 & 0 & 0
\end{array}\right]} \\
& r_{2}:=r_{2}+(-1) \widetilde{r_{1}, r_{3}}:=r_{3}+(-1) r_{1}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & -1 \\
0 & -1 & 1 & 1 & 0 & -1
\end{array}\right] \\
& r_{3}: \widetilde{=r_{3}}+r_{2}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & -1 \\
0 & 0 & 2 & 1 & 1 & -2
\end{array}\right] \\
& \widetilde{r_{3}:=\frac{r_{3}}{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -1
\end{array}\right] \\
& r_{2}:=\widetilde{r_{2}+(-1)} r_{3}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -1
\end{array}\right]
\end{aligned}
$$

So $B^{-1}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -1\end{array}\right]$.
(c)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
2 & 3 & 4 & 1 & 0 & 0 \\
5 & 6 & 7 & 0 & 1 & 0 \\
8 & 9 & 10 & 0 & 0 & 1
\end{array}\right] r_{2}: \widetilde{=r_{2}-2 r_{1}}\left[\begin{array}{ccc|ccc}
2 & 3 & 4 & 1 & 0 & 0 \\
1 & 0 & -1 & -2 & 1 & 0 \\
8 & 9 & 10 & 0 & 0 & 1
\end{array}\right]} \\
& r_{2} \rightleftarrows r_{1}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -2 & 1 & 0 \\
2 & 3 & 4 & 1 & 0 & 0 \\
8 & 9 & 10 & 0 & 0 & 1
\end{array}\right] \\
& r_{2}:=r_{2}-\widetilde{2 r_{1}, r_{3}}:=r_{3}-8 r_{1}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -2 & 1 & 0 \\
0 & 3 & 6 & 3 & -1 & 0 \\
0 & 9 & 18 & 16 & -8 & 1
\end{array}\right] \\
& r_{3}: \widetilde{r_{3}+(-3) r_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -2 & 1 & 0 \\
0 & 3 & 6 & 3 & -1 & 0 \\
0 & 0 & 0 & 7 & -5 & 1
\end{array}\right]
\end{aligned}
$$

So C only has one free variable (or two pivot vectors) and C is not invertible.
(d) $\left[\begin{array}{llll|llll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$
$r_{3}:=r_{3}+(-2) \widetilde{r_{1}, r_{4}}:=r_{4}+(-1) r_{1}\left[\begin{array}{cccc|cccc}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & -1 & 0 & 0 & 1\end{array}\right]$
$r_{3}:=r_{3}+(-3) r_{2}, r_{4}:=r_{4}+(-2) r_{2}\left[\begin{array}{cccc|cccc}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -2 & -3 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & -2 & 0 & 1\end{array}\right]$ So
$A^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -3 & 1 & 0 \\ -1 & -2 & 0 & 1\end{array}\right]$.
3. (a) Let A be an 3×3 matrix. Suppose $A^{3}+2 A^{2}-3 A+4 I=0$. Is A invertible? Express A^{-1} in terms of A if possible.
Solution: From $A^{3}+2 A^{2}-3 A+4 I=0$, we have $A^{3}+2 A^{2}-3 A=-4 I$, $A\left(A^{2}+2 A-3 I\right)=-4 I$ and $A \cdot\left(-\frac{1}{4}\left(A^{2}+2 A-3 I\right)\right)=I$. So $A^{-1}=$ $-\frac{1}{4}\left(A^{2}+2 A-3 I\right)$.
(b) Suppose $A^{3}=0$. Is A invertible?

Solution: If A is invertible then $A^{-2} A^{3}=A^{-2} 0$ and $A=0$ which is not invertible. So A is not invertible.
4. Describe the values of t so that the following matrices are invertible

$$
M=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & t+1 & 3 \\
1 & t & t+1
\end{array}\right] \text { and } A=\left[\begin{array}{cccc}
0 & 1 & 0 & t \\
-1 & 0 & t & 0 \\
0 & -t & 0 & 1 \\
-t & 0 & -1 & 0
\end{array}\right]
$$

Solution:
(a)
$M=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & t+1 & 3 \\ 1 & t & t+1\end{array}\right] r_{2}:=r_{2}+(-1) \widetilde{r_{1}, r_{3}}:=r_{3}+(-1) r_{1}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & t & 1 \\ 0 & t-1 & t-1\end{array}\right]$
$r_{3}:=\frac{1}{t-1} r_{3}$ if $t-1 \neq 0, r_{2} \leftrightarrow r_{3}\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & t & 1\end{array}\right] \quad r_{3}: \widetilde{r_{3}+(-t)} r_{2}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1-t\end{array}\right]$
Thus M is invertible if $t \neq 1$.
(b)

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
0 & 1 & 0 & t \\
-1 & 0 & t & 0 \\
0 & -t & 0 & 1 \\
-t & 0 & -1 & 0
\end{array}\right] \text { interchange 1st and 2nd row, } r_{1}:=(-1) r_{1}\left[\begin{array}{cccc}
1 & 0 & -t & 0 \\
0 & 1 & 0 & t \\
0 & -t & 0 & 1 \\
-t & 0 & -1 & 0
\end{array}\right] \\
r_{4}: \widetilde{=r_{4}+t} \cdot r_{1}\left[\begin{array}{cccc}
1 & 0 & -t & 0 \\
0 & 1 & 0 & t \\
0 & -t & 0 & 1 \\
0 & 0 & -1-t^{2} & 0
\end{array}\right] \xlongequal[r_{3}+t]{r_{3}} \cdot r_{2}\left[\begin{array}{cccc}
1 & 0 & -t & 0 \\
0 & 1 & 0 & t \\
0 & 0 & 0 & 1+t^{2} \\
0 & 0 & -1-t^{2} & 0
\end{array}\right] \\
r_{3}:=\frac{1}{1+t^{2}} r_{3}, r_{4}:=\frac{-1}{1+t^{2}} r_{4}, r_{3} \leftrightarrow r_{4}\left[\begin{array}{cccc}
1 & 0 & -t & 0 \\
0 & 1 & 0 & t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Thus A has no free variable (or four pivot vectors) and A is invertible for all t. Note that we have used the fact that $1+t^{2} \neq 0$ in the computation.
5. Find all values of a and b so that the subspace of \mathbb{R}^{4} spanned by $\left\{\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}b \\ 1 \\ -a \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 0\end{array}\right]\right\}$ is two-dimensional.
Solution: Consider the matrix $A=\left[\begin{array}{ccc}0 & b & -2 \\ 1 & 1 & 2 \\ 0 & -a & 0 \\ -1 & 1 & 0\end{array}\right]$
interchange first row and second row $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ -1 & 1 & 0\end{array}\right]$
$r_{4}: \widetilde{=r_{1}+r_{4}}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & b & -2 \\ 0 & -a & 0 \\ 0 & 2 & 2\end{array}\right]$
$\widetilde{\text { interchange second row }}$ and forth row $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -a & 0 \\ 0 & b & -2\end{array}\right]$
divide second row by $2\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -a & 0 \\ 0 & b & -2\end{array}\right] r_{3}:=r_{3}+\widetilde{a r_{2}, r_{4}}:=r_{4}-b r_{2}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & a \\ 0 & 0 & -2-b\end{array}\right]$.
Now the first and second vectors are pivot vectors. So $\operatorname{rank}(A)=2$ if $a=0$ and $-2-b=0$.
So $a=0$ and $b=-2$
6. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$. You can assume that \mathcal{B} is a basis for R^{3}
(a) Which vector x has the coordinate vector $[x]_{B}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.

Let $A=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$. So $x=A[x]_{B}=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{l}1-3+0 \\ 0-2+0 \\ 0-1+4\end{array}\right]=$ $\left[\begin{array}{c}-2 \\ -2 \\ 3\end{array}\right]$
(b) Find the β-coordinate vector of $y=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.

Solution. We have to solve $A x=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.
$\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & 2 & 3\end{array}\right] \widetilde{r_{2}:=\frac{1}{2} r_{2}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 3\end{array}\right] r_{2}: \widetilde{=r_{3}-r_{2}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 4\end{array}\right]$

$$
\begin{aligned}
& r_{3}:=\frac{1}{2} r_{3}
\end{aligned}\left[\begin{array}{lll|c}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] r_{1}: \widetilde{r_{1}-3} r_{2}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] .
$$

7. Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 3 & 0 \\
1 & 2 & 5 & 1 \\
1 & 3 & 7 & 2
\end{array}\right]
$$

Find bases for $\operatorname{Col}(M)$ and $\operatorname{Nul}(M)$, and then state the dimensions of these subspaces
Solution: $\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2\end{array}\right] r_{2}:=-r_{1}+\widetilde{r_{2}, r_{3}}:=-r_{2}+r_{3}\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 2\end{array}\right]$
$r_{3}: \widetilde{-2 r_{2}}+r_{3}\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] r_{1}: \widetilde{-2 r_{2}}+r_{3}\left[\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So the first two vectors are pivot vectors and $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{Col}(A)$ and $\operatorname{dim}(\operatorname{Col}(A))=2$.
The solution to $M x=0$ is $x_{1}+x_{3}-x_{4}=0$ and $x_{2}+2 x_{3}+x_{4}=0$. So $x=\left[\begin{array}{c}-x_{3}+x_{4} \\ -2 x_{3}-x_{4} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]$. Hence the basis for $\operatorname{Nul}(M)$ is $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}$ and $\operatorname{dim}(\operatorname{Nul}(M))=2$.
8. Find a basis for the subspace spanned by the following vectors $\left.\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -4 \\ -2\end{array}\right]\right\}$. What is the dimension of the subspace?

Solution: Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & -1 & -4 \\ 1 & 1 & -2\end{array}\right]$ $r_{2}:=r_{2}-\widetilde{r_{1}, r_{3}}:=r_{3}-r_{1}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -3 & -3 \\ 0 & -1 & -1\end{array}\right]$
$r_{2}: \widetilde{=r_{2} /(-3)}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1\end{array}\right] r_{3}: \widetilde{=r_{3}+r_{2}}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
So the first two vectors are pivot vectors and $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis. The dimension of the subspace is 2 .
9. Determine which sets in the following are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify your answer
(a) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]$. Solution: Since $\left[\begin{array}{c}2 \\ -4\end{array}\right]=-2\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, the set $\left\{\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]\right\}$ is dependent. It is not a basis.
(b) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$. Yes. This set forms a basis since they are independent and span R^{3}.
(c) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

This is not a basis since it doesn't span R^{3}.
(d) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$. This set forms a basis since they are independent and span R^{3}
(e) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$. This is not a basis since it is dependent.
10. Let A be the matrix

$$
A=\left[\begin{array}{cc}
-3 & -4 \\
-4 & 3
\end{array}\right]
$$

(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues and a basis of eigenvectors for A.
(c) Diagonalize the matrix A if possible.
(d) Find a polynomial $P(A)$ in A such that $P(A)=0$. Verify your answer.
(e) Find the formula for A^{k} where k is an positive integer. Solution:

1. $A-\lambda I=\left[\begin{array}{cc}-3-\lambda & -4 \\ -4 & 3-\lambda\end{array}\right]$.

So $\operatorname{det}(A-\lambda I)=(-3-\lambda)(3-\lambda)-16=\lambda^{2}-9-16=\lambda^{2}-25=$ $(\lambda-5)(\lambda+5)$
So the characteristic equation is $(\lambda-5)(\lambda+5)=0$.
2. Solving the characteristic equation $(\lambda-5)(\lambda+5)=0$, we get that the eigenvalues are $\lambda=5$ and $\lambda=-5$.
3. When $\lambda=5$, we have

$r_{1}: \widetilde{=-r_{1}} / 8=\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 0\end{array}\right]$.
The solution of $(A-5 I) x=0$ is $x_{1}+x_{2} / 2=0$, i.e. and $x_{1}=-x_{2} / 2$
So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} / 2 \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 / 2 \\ 1\end{array}\right]\right\}$.
We can choose $x_{2}=2$ to get $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ which is a basis for the eigenspace corresponding to eigenvalue 5 .
4. When $\lambda=-5$, we have

$$
\begin{aligned}
& A-\lambda I=\left[\begin{array}{cc}
-3+5 & -4 \\
-4 & 3+5
\end{array}\right]=\left[\begin{array}{cc}
2 & -4 \\
-4 & 8
\end{array}\right] \widetilde{r_{1}:=r_{1} / 2}\left[\begin{array}{cc}
1 & -2 \\
-4 & 8
\end{array}\right] \\
& r_{2}: \widetilde{=r_{2}+4 r_{1}}\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

The solution of $(A+5 I) x=0$ is $x_{1}-2 x_{2}=0$, i.e. and $x_{1}=2 x_{2}$ So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$.

The basis for the eigenspace corresponding to eigenvalue -5 is $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$.
Let $P=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]$. Then $P^{-1}=\frac{1}{-5}\left[\begin{array}{cc}1 & -2 \\ -2 & -1\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5}\end{array}\right]$.
So $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right]\left[\begin{array}{cc}-\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5}\end{array}\right]$
and $A^{k}=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}5^{k} & 0 \\ 0 & (-5)^{k}\end{array}\right]\left[\begin{array}{cc}-\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5}\end{array}\right]$.
Let $P(\lambda)=(\lambda-5)(\lambda+5)=\lambda^{2}-25$. Let $P(A)=A^{2}-25 I$. Then $A^{2}-25 I=0$. One can verify this by checking $A^{2}=$ $\left[\begin{array}{cc}-3 & -4 \\ -4 & 3\end{array}\right]\left[\begin{array}{cc}-3 & -4 \\ -4 & 3\end{array}\right]=\left[\begin{array}{cc}25 & 0 \\ 0 & 25\end{array}\right]=25\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=25 I$. Hence
$A^{2}-25 I=0$.
11. Let A be the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.
(a) Prove that $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$.
(b) Find the eigenvalues and a basis of eigenvectors for A .
(c) Diagonalize the matrix A if possible.
(d) Find the matrix exponential e^{A}. Solution.
a. 1. $A-\lambda I=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & 2-\lambda\end{array}\right]$.

So $\operatorname{det}(A-\lambda I)=(2-\lambda)^{3}+1+1-(2-\lambda)-(2-\lambda)-(2-\lambda)=$ $\left(4-4 \lambda+\lambda^{2}\right)(2-\lambda)+2-6+3 \lambda=8-8 \lambda+2 \lambda^{2}-4 \lambda+4 \lambda^{2}-\lambda^{3}-4+3 \lambda$ $=-\lambda^{3}+6 \lambda^{2}-9 \lambda+4=-(\lambda-1)^{2}(\lambda-4)$. So the characteristic equation is $-(\lambda-1)^{2}(\lambda-4)=0$.
2. Solving the characteristic equation $-(\lambda-1)^{2}(\lambda-4)=0$, we get that the eigenvalues are $\lambda=1$ and $\lambda=4$.
3. When $\lambda=1$, we have
$A-\lambda I=\left[\begin{array}{ccc}2-1 & 1 & 1 \\ 1 & 2-1 & 1 \\ 1 & 1 & 2-1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] r_{1}:=r_{2}-\widetilde{r_{1}, r_{3}}:=r_{3}-r_{1}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
The solution of $(A-I) x=0$ is $x_{1}+x_{2}+x_{3}=0$ and $x_{1}=-x_{2}-x_{3}$ So
$\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-x_{2}-x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$
4. When $\lambda=4$, we have
$A-\lambda I=\left[\begin{array}{ccc}2-4 & 1 & 1 \\ 1 & 2-4 & 1 \\ 1 & 1 & 2-4\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right]$
interchange $\widetilde{1 \text { st row }}$ and 2 nd row $=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2\end{array}\right]$
$r_{2}:=r_{2}+\widetilde{2 r_{1}, r_{3}}:=r_{3}-r_{1}=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3\end{array}\right] r_{2}:=\widetilde{r_{2} / 3, r_{2}}: r_{2}+r_{3}=$
$\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
$r_{2}: \widetilde{=r_{1}+2 r_{2}}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$

The solution of $(A-4 I) x=0$ is $x_{1}-x_{3}=0$ and $x_{2}-x_{3}=0$. This implies that $x_{1}=x_{3}, x_{2}=x_{3}$ and x_{3} is free. So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{3} \\ x_{3} \\ x_{3}\end{array}\right]=\right.$ $\left.x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 4 is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
So A is diagonalizable with $A=P D P^{-1}$ where $P=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ and
$D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]$.
Also $e^{A}=P e^{D} P^{-1}=P\left[\begin{array}{ccc}e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e^{4}\end{array}\right] P^{-1}$.
12. Let B be the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$.
(a) Find the characteristic equation of A .

Solution: $B-\lambda I=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 0 & 2-\lambda & 1 \\ 0 & 0 & 1-\lambda\end{array}\right]$.
So $\operatorname{det}(B-\lambda I)=(2-\lambda)^{2}(1-\lambda)$. The characteristic equation of A is $(2-\lambda)^{2}(1-\lambda)=0$.
(b) Find the eigenvalues and a basis of eigenvectors for B .

Solving $(2-\lambda)^{2}(1-\lambda)=0$, we know that the eigenvalues of B are $\lambda=2$ and $\lambda=1$.

When $\lambda=2$, we have
$B-\lambda I=\left[\begin{array}{ccc}2-2 & 1 & 1 \\ 0 & 2-2 & 1 \\ 0 & 0 & 1-2\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]$
$r_{2}:=r_{2}+\widetilde{r_{3}, r_{1}}:=r_{1}+r_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
The solution of $(B-2 I) x=0$ is $x_{2}=0, x_{3}=0$ and x_{1} is free. So $\operatorname{Null}(B-2 I)=\left\{\left[\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 2 is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
When $\lambda=1$, we have
$B-\lambda I=\left[\begin{array}{ccc}2-1 & 1 & 1 \\ 0 & 2-1 & 1 \\ 0 & 0 & 1-1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
$r_{1}: \widetilde{=r_{1}-r_{2}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
The solution of $(B-I) x=0$ is $x_{1}=0$ and $x_{2}+x_{3}=0$ So $x_{1}=0$, $x_{2}=-x_{3}$ and x_{3} is free. $\operatorname{Null}(B-I)=\left\{\left[\begin{array}{c}0 \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right.$.
So $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is an eigenvector corresponding to eigenvalue 2 and $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue 1 (c) Find a polynomial $P(B)$ in B such that $P(B)=0$. Verify your answer.
From (a), we have $p(\lambda)=\operatorname{det}(B-\lambda I)=(2-\lambda)^{2}(1-\lambda)=-(\lambda-$ $2)^{2}(\lambda-1)$. Then $P(B)=-(B-2 I)^{2}(B-I)=0$. We can verify this by computing $B-2 I=\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right], B-I=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ and
$-(B-2 I)^{2}(B-I)=\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=$ $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(d) Diagonalize the matrix B if possible.

From (b), we know that B has only two independent eigenvectors and B is not diagonzalizable.

