(Math 2890) Review Problems for Midterm II

1. (a) What is a subspace in R^{n} ?
(b) Is the set $\{(x, y, z) \mid x+y+z=1\}$ a subspace?
(c) Is the set $\{(x, y, z) \mid x-y-z=0, x+y-z=0\}$ a subspace?
(d) What is a basis for a subspace?
(e) What is the dimension of a subspace?
(f) What is the column space of a matrix?
(g) What is the null space of a matrix?
(h) What is an eigenvalue of a matrix A ?
(i) What is an eigenvector of a matrix A ?
(j) What is the characteristic polynomial of a matrix A ?
(k) What is the subspace spanned by the vectors $v_{1}, v_{2}, \cdots, v_{p}$?
2. Find the inverses of the following matrices if they exist.

$$
A=\left[\begin{array}{cc}
7 & -2 \\
-4 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right], C=\left[\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right] \text { and } D=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 3 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right]
$$

3. (a) Let A be an 3×3 matrix. Suppose $A^{3}+2 A^{2}-3 A+4 I=0$. Is A invertible? Express A^{-1} in terms of A if possible.
(b) Suppose $A^{3}=0$. Is A invertible?
4. Describe the values of t so that the following matrices are invertible

$$
M=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & t+1 & 3 \\
1 & t & t+1
\end{array}\right] \text { and } A=\left[\begin{array}{cccc}
0 & 1 & 0 & t \\
-1 & 0 & t & 0 \\
0 & -t & 0 & 1 \\
-t & 0 & -1 & 0
\end{array}\right]
$$

5. Find all values of a and b so that the subspace of \mathbb{R}^{4} spanned by $\left\{\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}b \\ 1 \\ -a \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 0\end{array}\right]\right\}$ is two-dimensional.
6. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$. You can assume that \mathcal{B} is a basis for R^{3}
(a) Which vector x has the coordinate vector $[x]_{B}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.
(b) Find the β-coordinate vector of $y=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.
7. Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 3 & 0 \\
1 & 2 & 5 & 1 \\
1 & 3 & 7 & 2
\end{array}\right]
$$

Find bases for $\operatorname{Col}(M)$ and $\operatorname{Nul}(M)$, and then state the dimensions of these subspaces
8. Find a basis for the subspace spanned by the following vectors $\left.\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -4 \\ -2\end{array}\right]\right\}$. What is the dimension of the subspace?
9. Determine which sets in the following are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify your answer
(a) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]$.
(b) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right] \cdot(\mathrm{c})\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(d) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
(e) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$.
10. Let A be the matrix

$$
A=\left[\begin{array}{cc}
-3 & -4 \\
-4 & 3
\end{array}\right]
$$

(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues and a basis of eigenvectors for A.
(c) Diagonalize the matrix A if possible.
(d) Find a polynomial $P(A)$ in A such that $P(A)=0$. Verify your answer.
(e) Find the formula for A^{k} where k is an positive integer.
11. Let A be the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.
(a) Prove that $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$.
(b) Find the eigenvalues and a basis of eigenvectors for A.
(c) Diagonalize the matrix A if possible.
(d) Find the matrix exponential e^{A}.
12. Let B be the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$.
(a) Find the characteristic equation of A .
(b) Find the eigenvalues and a basis of eigenvectors for A.
(c) Find a polynomial $P(A)$ in A such that $P(A)=0$. Verify your answer.
(d) Diagonalize the matrix A if possible.

