Math 2890 Homework 7 Due date: Oct. 26
(1) Compute the determinant of the following matrices.

$$
\left[\begin{array}{ccc}
3 & 2 & 4 \\
2 & 3 & 2 \\
-1 & 5 & -1
\end{array}\right],\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
-1 & -1 & 2
\end{array}\right],\left[\begin{array}{cccc}
3 & 2 & 0 & 4 \\
-1 & 5 & -3 & 2 \\
2 & 3 & 0 & 2 \\
-1 & 5 & 0 & -1
\end{array}\right]
$$

(2) Find the characteristic polynomial, eigenvalues and eigenvectors of the following matrices. $\left[\begin{array}{ll}3 & -2 \\ 1 & -1\end{array}\right],\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$.
(3) (a) Let $A=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.

Show that $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)(3-\lambda)$.
(b) Use the information above to find the eigenvalues and eigenvectors of A.
(c) Diagonalize the matrix A if possible, i.e find a invertible matrix P and a diagonal matrix where $A=P D P^{-1}$.
(4) (a) Let $A=\left[\begin{array}{ccc}0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5\end{array}\right]$. Show that $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)^{2}$.
(b) Use the information above to find the eigenvalues and eigenvectors of A.
(c) Diagonalize the matrix A if possible, i.e find a invertible matrix P and a diagonal matrix where $A=P D P^{-1}$.
(d) Find an expression for A^{10}.

