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Abstract

Let x be a p-element of a finite group G. We say that x is unfused
in G if, for some Sylow p-subgroup S of G containing x, all G-conjugates
of x in S are S-conjugates. It is shown (using the classification of finite
simple groups) that a finite group which contains an unfused involution
has a chief factor of order 2.

1 Introduction

Let G be a finite group, p be a prime, and S be a Sylow p-subgroup of G. For
any x ∈ G and H ≤ G, let xH denote the set of H-conjugates of x. We shall
say that an element x ∈ S is unfused in G if xG ∩ S = xS . (The property of
being unfused is easily seen to be independent of the choice of S.)

It is a well-known result (an application of the transfer homomorphism) that
if all p-elements of G are unfused then G is p-nilpotent. It seems reasonable,
therefore, to ask what consequences might ensue from the existence of a single
unfused class of p-elements. If G is p-solvable, a simple induction argument
shows that if x ∈ G is a non-identity unfused p-element, then G has a central
chief factor of order p and, in fact, x /∈ [G, x]. Here, we show that in the case that
x is an involution, the same conclusion holds without any solvability hypothesis.

Main Theorem If G is a finite group and x is an unfused involution in G,
then x /∈ [G, x].

If x is an involution, [G, x] consists simply of all products of an even number
of conjugates of x and so the conclusion of the theorem is equivalent to the
statement that elements of 〈xG〉 have a well-defined parity with respect to their
representation as products of conjugates of x. Indeed, transpositions in sym-
metric groups of degree 2k or 2k + 1 provide perhaps the simplest examples of
non-central unfused involutions (Lemma 3.1). Non-trivial examples of unfused
involutions may also be found in certain classical matrix groups. For example,
if q ≡ 3 (mod 4), a Sylow 2-subgroup S of GL2(q) is semi-dihedral and the
non-central involutions of S are all conjugate in S. The same applies to the
unitary groups U2(q) if q ≡ 1 (mod 4). For a projective example, suppose that

q ≡ 1 (mod 4) and λ is not a square in the field of order q. If x =
(

0 1
λ 0

)
,

then x̄ = xZ(GL2(q)) is an unfused involution in PGL2(q). These examples
are, of course, all non-simple, the main thrust of the theorem being that un-
fused involutions cannot occur in simple groups. (It is perhaps worth noting
that simplicity is not precluded by the weaker hypothesis that the involution x
of a Sylow 2-subgroup S of G lies outside the subgroup 〈[g, x] : xg ∈ S〉 [5].)
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The statement of the theorem is formally reminiscent of the celebrated Z∗-
theorem of G. Glauberman [6]: If x ∈ S ∈ Syl2(G) is an involution for which
xG∩S = {x}, then [G, x] ⊆ O2′(G). However, the similarity may be superficial.
Unlike the case with Glauberman’s theorem, the result above depends critically
on the hypothesis that x is an involution. (For example, if G has dihedral Sylow
2-subgroups, any element of order 4 is obviously unfused.) Moreover, it is not
immediately evident that either result is a consequence of the other.

Of course, the significance of the Z∗-theorem rests largely on the fact that
its proof is independent of the classification of finite simple groups (in which it,
in fact, plays an important role). Such a proof of our result has eluded us and
so we have resorted to a direct assault with the full force of the classification.
Needless to say, a classification-free proof would be much more interesting.

The reduction to the case of a simple group and the elimination of the al-
ternating groups as potential counterexamples are each quick and elementary.
The groups of Lie type in characteristic 2 are treated using basic properties of
parabolics while the exceptional groups in odd characteristic and the sporadic
groups are handled using specific structural data from the literature (particu-
larly the Atlas [4]). For the classical groups in odd characteristic, we have not
found a comparably efficient approach and it is this case that occupies the bulk
of the argument.

2 The minimal counterexample

Lemma 2.1 If H is a nilpotent group and x ∈ H\{1}, then x /∈ [H, x].

Proof. Induction on the nilpotence class of H (applied to H/Z(H)).

Lemma 2.2 A minimal counterexample G to the Main Theorem is a non-
abelian simple group.

Proof. Let G be a counterexample of minimal order with an unfused involu-
tion x. Since the hypothesis is independent of which of the Sylow 2-subgroups
containing x we take for S, we may assume that CS(x) is a Sylow 2-subgroup
of CG(x).

Let N be a minimal normal subgroup of G. If x /∈ N then xN is an unfused
involution in G/N . By the minimality of G, xN /∈ [G/N, xN ] = [G, x]N/N ,
whence x /∈ [G, x], a contradiction. Therefore, x ∈ N .

Let H = CG(x)N . Then CS(x)(S ∩ N) is a Sylow 2-subgroup of H and
so S ∩ H = CS(x)(S ∩ N). Also, x is unfused in H, for if h ∈ H such that
xh ∈ S ∩H then xh = xs for some s ∈ S and, because CG(x) ≤ H, s ∈ S ∩H.

If H 6= G, then by the inductive hypothesis, x /∈ [H,x] = [N, x] and so N has
a chief factor 〈xN 〉/[N,x] ∼= Z2. We conclude that N is an elementary abelian
2-group and so x ∈ N ≤ O2(G). But in this case, xG ⊆ S, whence xG = xS . It
follows that G = CG(x)S and so x ∈ [G, x] = [S, x], contradicting the previous
lemma. Therefore, H = G and S = S ∩H = CS(x)(S ∩N).

From this factorization of S, it follows that x is unfused in N and so if N 6= G,
the inductive hypothesis implies that x /∈ [N,x]. But because G = CG(x)N ,
[N, x] = [G, x] and so this contradicts that fact that x ∈ [G, x]. Therefore,
N = G and so G is a simple non-abelian group.

Remark: Although the Main Theorem itself is false for p > 2, the preceding
argument works for all primes p and is easily adapted to prove what was claimed
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in the Introduction, that if x is an unfused p-element in a p-solvable group G,
then x /∈ [G, x].

Lemma 2.3 Let x ∈ G be an unfused involution and let x ∈ S ∈ Syl2(G).
If x ∈ O2(G) then x ∈ S′. If x /∈ Z∗(G) then x /∈ Z(S). In particular, if
both of these hypotheses hold, then G has at least two classes of involutions and
Ω1(S′) 6≤ Z(S).

Proof. If θ is the transfer homomorphism G → S/S′, then because x is
unfused in G, θ(x) = x|G:S|S′ = xS′. Since x ∈ O2(G) ≤ ker θ, x ∈ S′. If
x ∈ Z(S) then xG ∩ S = {x} and so x ∈ Z∗(G) by Glauberman’s theorem.

The following simple observation about a minimal counterexample will prove
useful in eliminating certain groups of Lie type and some sporadic groups:

Lemma 2.4 Let G be a minimal counterexample to the Main Theorem and
assume that x ∈ H < G and |G : H| is odd. If N £ H and (H/N)′ is a direct
product of non-abelian simple groups, then x ∈ N .

Proof. If x /∈ N then, because |G : H| is odd, xN is an unfused involution
in H = H/N and so, by the minimality of G, x̄ = xN /∈ [H, x̄]. But x ∈ S′ by
the preceding lemma and so x̄ ∈ H

′
. Therefore, x̄[H, x̄] generates a chief factor

of order 2 of H
′
. But by hypothesis, H

′
has no such chief factor and so x ∈ N .

Corollary 2.5 Let G be a minimal counterexample to the Main Theorem and
assume that S ∈ Syl2(G) such that S ≤ M < G and (M/O2,2′(M))′ is a direct
product of non-abelian simple groups. Then M ≤ NG(〈xS〉).

Proof. By Lemma 2.4, x ∈ O2,2′(M) and so x ∈ O2(M), whence xM = xS

and in particular, 〈xS〉£ M .

3 The alternating groups

Lemma 3.1 If x is an involution in the symmetric group Sn, then x is unfused
in Sn if and only if x is a transposition and n = 2k or 2k + 1 for some k.

Proof. We may assume without loss that x = (12)(34) . . . (2r − 1 2r) ∈ 〈X〉
where 2r ≤ m = 2[n

2 ] and X = {(12), (34), . . . , (m−1 m)}. Suppose that r ≥ 2.
If y = x(23) = (13)(24)(56) . . . (2r − 1 2r), conjugation of X by y interchanges
(12) and (34) and fixes all other elements of X. In particular, y ∈ NG(〈X〉) and
so 〈X, y〉 ≤ S ∈ Syl2(G). X is a maximal set of pairwise disjoint transpositions
in Sn and so it is precisely the set of transpositions in S. Thus, 〈X〉£ S and so
xS ⊆ 〈X〉. Then y = x(23) ∈ xSn ∩ S = xS ⊆ 〈X〉, a contradiction because y
does not centralize (12). We conclude that r = 1 and so x is a transposition.

If n = 2n1 + 2n2 + · · ·+ 2nt (0 ≤ n1 < n2 < . . . < nt) is the binary represen-
tation of n, then any partition of {1, 2, . . . , n} into t subsets of cardinality 2ni ,
1 ≤ i ≤ t, defines an embedding of S2n1 ×S2n2 × . . .×S2nt as a subgroup of odd
index in Sn. Hence, a Sylow 2-subgroup S of Sn is a direct product of Sylow
2-subgroups of the S2ni . Transpositions in distinct direct factors of S are not
S-conjugate and so if some transposition of Sn is unfused, S must be directly
indecomposable. Therefore, n = 2k or 2k + 1 for some k.
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If n is of the form 2k or 2k + 1 then, because S ∼= (Z2 o Z2) o . . . o Z2, the
elements of X (i.e. the transpositions in S) are all S-conjugate (and hence,
S-conjugate to x) and so all transpositions are unfused in Sn.

Corollary 3.2 The alternating groups contain no unfused involutions.

Proof. Suppose that x is an unfused involution in An and x ∈ T ∈ Syl2(An).
Let T ≤ S ∈ Syl2(Sn) and let y ∈ S\T , so Sn = An〈y〉 and S = T 〈y〉. Then
xAn∩S = xAn∩S∩An = xAn∩T ⊆ xT and so xAny∩S = (xAn∩S)y ⊆ xTy ⊆ xS .
Thus, xSn∩S ⊆ xS and so x is unfused in Sn, contradicting the preceding lemma.

4 The classical groups in odd characteristic

In this section, V is a vector space of dimension n ≥ 2 over a finite field F of
odd order and ( , ) denotes a binary form on V which is either the zero form
or a non-degenerate alternating, hermitian or symmetric form. In the hermi-
tian case, |F | = q2 and the form is sesquilinear with respect to the Frobenius
automorphism c 7→ cq. In all other cases, |F | = q. We shall use the symbol “∼=”
to denote both isometric spaces and isomorphic groups. By a “direct sum”, we
shall always mean an orthogonal direct sum.

It is a standard fact that if n = 2, then in the alternating and hermitian
cases, V is a hyperbolic plane (i.e. V is generated by isotropic vectors u and v
with (u, v) = 1). In the symmetric case, it is either a hyperbolic plane, denoted
here by Π+, or what we shall call an elliptic (totally anisotropic) plane Π−.
(See, for example, [9].)

G will denote the group of isometries of V with respect to the form (i.e. the
general linear, symplectic, unitary, or an orthogonal group on V ).

Recall the following order formulae (for odd q):

A. If G = GLn(q), then

|G| = qn(n−1)
n∏

i=1

(qi − 1).

B. If G = Spn(q), then n = 2m and

|G| = qm2
m∏

i=1

(q2i − 1).

C. If G = Un(q), then

|G| = qn(n−1)/2
n∏

i=1

(qi − (−1)i).

D. If G is an orthogonal group, then one of the following holds:

4



1. n = 2m + 1, G = On(q) and

|G| = 2qm2
m∏

i=1

(q2i − 1).

2. n = 2m, G = Oη
n(q) (where η = ±1) and

|G| = 2qm(m−1)(qm − η)
m−1∏

i=1

(q2i − 1).

We assume that the element x ∈ G′ satisfies x2 = λI ∈ Z(G) for some
λ ∈ F . The goal of the section is to show that the involution xZ(G) is not
unfused in (G/Z(G))′ (so a counterexample to the Main Theorem is not to be
found among the classical groups of odd characteristic).

In the orthogonal case, we define ε = ±1 by the congruence q ≡ ε (mod 4).
Thus, ε = 1 or −1 according as whether or not −1 ∈ F 2 = {c2 : c ∈ F}.

Lemma 4.1 Assume that the form ( , ) is non-zero.
If V is a symplectic or unitary space and dim V ≥ 2, then V contains an

x-invariant hyperbolic plane.
If V is an orthogonal space and dim V ≥ 3, then V contains an x-invariant

plane isometric to Πε.

Proof. In the symplectic and unitary cases, non-degenerate planes are hy-
perbolic and so for the first statement, it is enough to show that if dim V ≥ 3,
then V contains a non-degenerate x-invariant plane. Suppose that λ = µ2 for
some µ ∈ F . Then ±µ are the eigenvalues of x and since both lie in F , V
is spanned by eigenvectors of x. Because V is non-degenerate, there exists a
pair of (not necessarily distinct) eigenvectors u, v such that (u, v) 6= 0. If one
of these vectors, say u, is anisotropic, then V = L ⊥ L⊥ where L = 〈u〉 and,
by induction on dim V , L⊥ contains an x-invariant hyperbolic plane. But if
u and v are isotropic then 〈u, v〉 is an x-invariant hyperbolic plane. There-
fore, we may assume that λ /∈ (F×)2 (and in particular, λ 6= 1), whence
V has no x-invariant one-dimensional subspaces. Then if v ∈ V and the x-
invariant plane L = 〈v, vx〉 is degenerate, L ∩ L⊥ is non-zero and x-invariant,
whence L ∩ L⊥ = L. Hence, we may assume that (v, v) = (v, vx) = 0 for
all v ∈ V (and so V is a symplectic space). But then for any u, v ∈ V ,
0 = (u + vx, (u + vx)x) = (u + vx, ux + λv) = (λ − 1)(u, v) and so (u, v) = 0,
contradicting our assumption that the form ( , ) is non-zero.

For the second statement, we show that there exist u, v ∈ V such that
〈u, v〉 is x-invariant, (u, u) = (v, v) 6= 0, and (u, v) = 0. This suffices because if
α, β ∈ F , αu + βv ∈ 〈u, v〉 is isotropic if and only if α2 + β2 = 0. But such a
pair α, β exists if and only if −1 ∈ F 2 (i.e. ε = 1). Therefore, because 〈u, v〉 is
non-degenerate, it is isometric to Π+ if ε = 1 and to Π− if ε = −1.

If λ 6= 1, let v ∈ V be anisotropic and let u = vx. Then 〈u, v〉 is x-invariant,
(u, u) = (v, v) and (u, v) = (ux, vx) = (λv, u) = λ(u, v), whence (u, v) = 0.

If λ = 1, then x has eigenvalues ±1 and V = E1 ⊥ E−1, where E±1 are
the corresponding eigenspaces. Because dim V ≥ 3, V contains three pairwise
orthogonal anisotropic eigenvectors, say v, u1 and u2. There exist α, β ∈ F such
that α2(u1, u1)+β2(u2, u2) = (v, v) ([9], Lemma 11.1) and so, if u = αu1 +βu2,
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(u, u) = (v, v) and the pair u, v satisfies our requirements.

Lemma 4.2 There exists a decomposition V = V1 ⊥ . . . ⊥ Vm ⊥ U such that
each summand is x-invariant, dim Vi = 2 for all i and dim U ≤ 1. Moreover, in
the orthogonal case, Vi

∼= Πε for 1 ≤ i ≤ m− 1 and if U 6= 0, Vm
∼= Πε.

Proof. We may assume that dim V ≥ 3. (Note that the second statement
is vacuous if dim V ≤ 2). The general linear case is immediate from Maschke’s
theorem. In the other cases, because V = W ⊥ W⊥ for any non-degenerate
subspace W of V , we apply the preceding lemma and induction on dimV .

Lemma 4.3 Let H be the (setwise) stabilizer in G of {V1, . . . , Vm, U}.
If G is a general linear group, H ∼= GL2(q) o Sm or (GL2(q) o Sm)×GL1(q),

according as dim U = 0 or 1.
If G is a symplectic group, then H ∼= Sp2(q) o Sm.
If G is a unitary group, then H ∼= U2(q) oSm or U2(q) oSm×U1(q), according

as dim U = 0 or 1.
If G is an orthogonal group and if dim U = 1, then H ∼= (Oε

2(q) oSm)×O1(q).
If G is an orthogonal group and if dim U = 0, then H ∼= Oε

2(q) o Sm or
(Oε

2(q) o Sm−1)×O−ε
2 (q), according as Vm is isometric to Πε or Π−ε.

In all cases, |G : H| is odd.

Proof. All of the statements except the last are a consequence of Lemma
4.2. The last statement follows from the order formulas. In verifying this, it
may be useful to note that if i2 denotes the 2-part of the integer i, then

(i) if i is odd, (qi ± 1)2 = (q ± 1)2, and
(ii) if i is even, (qi − 1)2 = i2(q − ε)2.
Note that Lemma 4.3 provides a concise description of the Sylow 2-subgroups

of each of the classical groups in odd characteristic. For the orthogonal groups,
this description seems somewhat more transparent than that given in [3].

While our concern is with unfused involutions in (G/Z(G))′, the upshot
of the next observation is that it is sufficient to consider involution fusion in
G/Z(G) (whose Sylow 2-subgroups are, in view of the preceding lemma, more
conveniently described).

Corollary 4.4 If G = G/Z(G) and x̄ = xZ(G) is an unfused involution in G
′
,

then x̄ is unfused in G.

Proof. We claim first that G/(CG(x)G′) is an abelian 2-group. If G0 = {g ∈
G : det g = 1} then G′ = G0 except in the orthogonal case when |G0 : G′| = 2
([9], Chapter 11). Thus, it suffices to show that G/(CG(x)G0) is a 2-group.

By Lemma 4.3, we may let V = V1 ⊥ W where dim V1 = 2 and both
summands are x-invariant. If g ∈ G, let h ∈ G be the transformation of V
which induces scalar multiplication by det g on V1 and fixes each element of
W . Since V1 and W are x-invariant, h ∈ CG(x). But det g2 = det h and so
g2 ∈ hG0 ⊆ CG(x)G0. Therefore, G/(CG(x)G0) has exponent at most 2 and
the claim is proved.

It follows that if S ∈ Syl2(G), then G = CG(x)G′S. Assuming that x̄ ∈ S =
SZ(G)/Z(G), then because x̄ is unfused in G′,

x̄G ∩ S = x̄G′S ∩ S = (x̄G
′ ∩ S)S = (x̄(S∩G′))S = x̄S
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and so x̄ is unfused in G.

Lemma 4.5 Let X = V1 ⊥ V2 be a subspace of V , where V1 and V2 are non-
degenerate x-invariant planes. In the orthogonal case, assume that Vi

∼= Πε for
i = 1, 2. If no eigenspace of x in X has dimension greater than 2, then either

(a) there is a subspace W of X such that W ∼= V1
∼= V2 and X = W ⊥ W x

or
(b) x2 = 1 (whence, X admits a decomposition into eigenspaces E1 ⊥ E−1),

E1
∼= E−1

∼= Π−ε and V1 ∩ E1
∼= V1 ∩ E−1 6∼= V2 ∩ E1

∼= V2 ∩ E−1.

Proof. Suppose first that x has an eigenvector in X so X is a sum (not
necessarily orthogonal) of eigenspaces Eµ and E−µ (and each Vi is a sum of
Vi ∩ Eµ and Vi ∩ E−µ), where µ2 = λ.

If u, v ∈ Eµ, (u, v) = (ux, vx) = (µu, µv) = µ1+q(u, v) so either µ1+q = 1
or Eµ is totally isotropic. On the other hand, if u ∈ Eµ and v ∈ E−µ then
(u, v) = (ux, vx) = (µu,−µv) = −µ1+q(u, v) so either µ1+q = −1 or Eµ ⊥ E−µ.
Thus, either X = Eµ ⊥ E−µ or each E±µ is totally isotropic.

In the former case, dimEµ = dimE−µ = 2. Then Eµ
∼= E−µ (in the orthogo-

nal case, because Πε ⊥ Πε 6∼= Πε ⊥ Π−ε by the Witt Cancellation theorem) so we
may choose bases {r1, r2} for Eµ and {s1, s2} for E−µ such that (ri, rj) = (si, sj)
for i, j ∈ {1, 2}. Let w1 = r1 + s1, w2 = r2 + s2 and W = 〈w1, w2〉. Then
X = W ⊥ W x. If the form on X is zero, symplectic or unitary, we are done
since W ∼= V1

∼= V2 and so assume that X is an orthogonal space.
Then µ = ±1 (and so x2 = 1) and (wi, wj) = (ri + si, rj + sj) = (ri, rj) +

(si, sj) = 2(ri, rj). It follows that W contains an isotropic vector if and only if
E1 does and so W ∼= E1

∼= E−1. If E1
∼= Πε, then (a) holds and so assume that

E1
∼= Π−ε. We claim in this case that (b) holds.
V1 ∩ E1 and V1 ∩ E−1 are each 1-dimensional so let {e1} and {f1} be bases

for these respective subspaces. Suppose that (f1, f1)/(e1, e1) /∈ (F×)2. Then
V1

∼= Π+ (that is, it contains an isotropic vector xe1 + yf1) if and only if
−(f1, f1)/(e1, e1) ∈ (F×)2. But this, in turn, holds if and only if −1 /∈ (F×)2

(and so ε = −1), contradicting the hypothesis that V1
∼= Πε. Therefore,

(f1, f1)/(e1, e1) ∈ F 2 and so V1∩E1
∼= V1∩E−1. Similarly, V2∩E1

∼= V2∩E−1.
Suppose that V1∩E1

∼= V2∩E1. Then we may choose bases {e1} and {d1} for
these respective spaces so that (e1, e1) = (d1, d1). Hence, (xe1+yd1, xe1+yd1) =
(x2 + y2)(e1, e1) and so E1 = 〈e1, d1〉 ∼= Π+ if and only if −1 ∈ (F×)2 (or
equivalently, ε = 1). But E1

∼= Π−ε, a contradiction. Therefore, V1 ∩ E1 6∼=
V2 ∩ E1 and (b) holds as claimed. This completes the proof in the case that
Eµ ⊥ E−µ.

Suppose that Eµ and E−µ are totally isotropic, whence V1 and V2 each
contain isotropic vectors and so are hyperbolic planes. Let Vi ∩ Eµ = 〈ri〉,
Vi∩E−µ = 〈si〉, i = 1, 2 and define w1 = r1+s2, w2 = r2+s1 and W = 〈w1, w2〉.
Then X = W ⊥ W⊥. Also, (w1, w1) = (r1 + s2, r1 + s2) = 0 and so W is also a
hyperbolic plane. Thus, W ∼= V1

∼= V2 and (a) holds.
We are left with the case that x has no eigenvectors in X (whence λ 6= 1).

In this case, let vi ∈ Vi, i = 1, 2, such that (v1, v1) = (v2, v2) and let ui = vx
i , so

〈vi, ui〉 = Vi and (u1, u1) = (u2, u2).
In the general linear case, we may simply take W = 〈v1, v2〉.
If X is a symplectic space, (vi, ui) 6= 0 (because Vi is non-degenerate) and

(vi, ui) = (vx
i , ux

i ) = (ui, λvi) = −λ(vi, ui) so λ = −1. Choose α, β ∈ Fq such
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that α2 + β2 = −(v2, u2)/(v1, u1) and let w1 = αv1 + βu1 + v2, w2 = −βv1 +
αu1 − u2 and W = 〈w1, w2〉. W is then a hyperbolic plane and X = W ⊥ W x.

If X is a unitary space, choose vi to be isotropic so (vi, ui) 6= 0 (since
〈vi, ui〉 = Vi). Then we have (vi, ui) = (vx

i , ux
i ) = (ui, λvi) = λq(vi, ui)q and so

(v1, u1)q−1 = λ−q = (v2, u2)q−1. Therefore, ((v2, u2)/(v1, u1))q−1 = 1, whence
(v2, u2)/(v1, u1) ∈ Fq and so cq+1 = −(v2, u2)/(v1, u1) for some c ∈ F . If
w1 = cv1 +v2 and w2 = cu1−u2 then w1 and w2 are isotropic and (w1, w2) 6= 0,
so W = 〈w1, w2〉 is a hyperbolic plane. Moreover, wx

1 = cu1 + u2 ∈ W⊥ and
wx

2 = λ(cv1 − v2) ∈ W⊥. Therefore, W x = W⊥ and X = W ⊥ W x.
Finally, suppose that X is an orthogonal space. Then (v, vx) = (vx, vx2

) =
(vx, λv) = λ(v, vx), whence (since λ 6= 1), (v, vx) = 0 for all v ∈ X (and in
particular, (vi, ui) = 0 for i = 1, 2). If Vi contained an isotropic vector v, then
Vi = 〈v, vx〉 would be totally isotropic, contradicting the non-degeneracy of X.
Hence, each Vi is an elliptic plane Π− and so, ε = −1. If W = 〈v1, v2〉, then
X = W ⊥ W x. Also, (αv1 + βv2, αv1 + βv2) = (α2 + β2)(v1, v1) and since
ε = −1, α2 + β2 6= 0 for all α, β ∈ F . Therefore, W ∼= Π− and the proof is
complete.

Lemma 4.6 Let H = H1 × H2 be a subgroup of odd index in G and assume
that x ∈ H such that xZ(G) is an unfused involution in G/Z(G). If x = x1x2,
where xi ∈ Hi, i = 1, 2, then for each i, xiZ(Hi) is unfused in Hi/Z(Hi).

Proof. We may assume that xi ∈ Si ∈ Syl2(Hi) for i = 1, 2. If h1 ∈ H1 such
that xh1

1 ∈ S1Z(H1) then xh1
1 ∈ S1 and so xh1 = xh1

1 x2 ∈ S = S1×S2 ∈ Syl2(G).
By hypothesis, there exist elements si ∈ Si, i = 1, 2, such that

xh1
1 x2Z(G) = xs1s2Z(G) = xs1

1 xs2
2 Z(G).

Thus, for some z ∈ Z(G), x−s1
1 xh1

1 = xs2
2 x−1

2 z ∈ H1 ∩ CG(H1) = Z(H1) and so
xh1

1 Z(H1) = xs1
1 Z(H1) as required. The proof for H2/Z(H2) is similar.

Theorem 1 Let G be a classical group over a field F of odd order and let V be
the natural FG-module with associated G-invariant form ( , ). Assume in the
orthogonal case that dim V ≥ 3; otherwise, that dim V ≥ 2. If x̄ = xZ(G) is
an unfused involution in G = G/Z(G), then x̄ /∈ G

′
.

Proof. Assume that the pair (G,V ) is a counterexample with V of minimal
F -dimension, where |F | = q2 in the unitary case and |F | = q otherwise.

Suppose first that dim V = 2 and G ∼= PGL2(q). Because PSL2(q) =
O2(PSL2(q)) has dihedral Sylow 2-subgroups, it has a unique conjugacy class
of involutions (by the Thompson transfer lemma) and so from the hypothesis,
every involution of PSL2(q) is unfused in PGL2(q). But if T ∈ Syl2(PSL2(q)),
T £ S for some S ∈ Syl2(PGL2(q)), whence Z(T )S = Z(T ). The unfused
hypothesis then implies that all involutions of T lie in Z(T ), which is false.
Therefore, G 6∼= PGL2(q). Because Sp2(q) ∼= SL2(q) ∼= SU2(q) ([9], 8.1 and
10.9), similar considerations eliminate the two-dimensional symplectic and uni-
tary cases. Thus, in the non-orthogonal cases, we may assume that dimV ≥ 3.

Because PΩ3(q) ∼= PSL2(q) ([9], 11.8) and PΩ−4 (q) ∼= PSL2(q2) ([9], 12.43),
the same argument shows that G is not O3(q) or O−

4 (q). Also PΩ+
4 (q) ∼=

PSL2(q) × PSL2(q) ([9], 12.39) and so PΩ+
4 (q) has three classes of involu-

tions, and for a given Sylow 2-subgroup S of G, each class contains elements
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of both Z(S) and S\Z(S). Thus, a similar argument eliminates O+
4 (q) as a

possibility for G. Therefore, we may assume that dim V ≥ 5 in the orthogonal
cases.

Let x ∈ G′ such that x̄ = xZ(G) is an unfused involution in G = G/Z(G)
(so x2 = λI for some λ ∈ F ) and, as in Lemma 4.2, let V = V1 ⊥ . . . ⊥ Vm ⊥
U . By Lemma 4.3, we may assume that S ∈ Syl2(G) leaves invariant the set
{V1, . . . , Vm, U} in G. Because G

′
= O2(G

′
), x̄ ∈ O2(G) and so Lemma 2.3

yields that x̄ ∈ S
′
. Thus, x ∈ S′Z(G) and so we may assume that x ∈ S′ (and

λ is a 2-element of F×). In the case that U 6= 0, elements of S obviously leave
U invariant and in the even-dimensional orthogonal case in which Vm

∼= Π−ε,
elements of S leave Vm invariant. We argue now that neither of these cases
applies to V .

For any subspace X of V , let GX denote the subgroup of those elements of
G which leave X invariant and induce the identity map on X⊥. (Thus, GX is
isomorphic to the isometry group of X with respect to the form induced from
V .) If U 6= 0, let Z = V1 ⊥ . . . ⊥ Vm (so U = Z⊥). If V is even-dimensional
orthogonal and Vm

∼= Π−ε, let Z = V1 ⊥ . . . ,⊥ Vm−1 (so Vm = Z⊥). In
either case, S ≤ GZ × GZ⊥ and so S = SZ × SZ⊥ , where SZ ∈ Syl2(GZ) and
SZ⊥ ∈ Syl2(GZ⊥). Because x ∈ S′, x = yz where y ∈ (SZ)′ and z ∈ (SZ⊥)′.
By Lemma 4.6, the element yZ(GZ) ∈ (GZ/Z(GZ))′ is unfused in GZ/Z(GZ)
and so, since 2 ≤ dim Z < dim V in the non-orthogonal cases and 3 ≤ dimZ <
dim V in the orthogonal case, the minimality of dim V yields that y ∈ Z(GZ).
Therefore, y induces on Z scalar multiplication by some µ ∈ F and since y2

induces scalar multiplication by λ, µ2 = λ. If Z⊥ = U , then (GZ⊥)′ = 1
and so z = 1. If V is an even-dimensional orthogonal space and Z⊥ = Vm,
then Z(GZ) = {±I}. Therefore, µ = ±1 and so λ = 1 and x, y and z are
all involutions. Because GZ⊥

∼= O−ε
2 (q) is dihedral, (GZ⊥)′ is cyclic and so

z ∈ Z(GZ⊥). In either case, we conclude that x ∈ Z(S), whence, by Lemma
2.3, x ∈ Z∗(G). But Z∗(G) = Z(G), contradicting the assumption that xZ(G)
is an involution. This proves the assertion of the preceding paragraph, that
U = 0 and, in the orthogonal case, the Vk’s are all isometric to Πε.

Suppose that for some pair i, j, conclusion (a) of Lemma 4.5 holds for the
subspace Vi ⊥ Vj . Thus, assuming without loss that i = 1 and j = 2, V1 ⊥ V2

contains a subspace W ∼= V1
∼= V2 such that V1 ⊥ V2 = W ⊥ W x. Let η ∈ S be

an isometry of V of order 2 which interchanges V1 and V2 and fixes (pointwise)
all Vk for k ≥ 3. Let θ : W → V1 be an isometry. Then there is a unique
isometry g of V such that for any w ∈ W , wg = wθ, (wx)g = wθη and vg

k = vk

if vk ∈ Vk, k ≥ 3. Hence, vxg

1 = vg−1xg
1 = vη

1 if v1 ∈ V1, vxg

2 = λvη−1

2 = λvη
2 if

v2 ∈ V2, and vxg

k = vk = vη
k if vk ∈ Vk, k ≥ 3. Therefore, xgη−1 induces scalar

multiplication by λ on V2 and the identity map on Vk for k 6= 2. Since λ is a
2-element of F×, it follows that xgη−1 ∈ S, whence xg ∈ S.

By hypothesis, xg = xsz for some s ∈ S, z ∈ Z(G). But whereas xg

interchanges V1 and V2, xs leaves V1 and V2 invariant (because x leaves all
summands invariant and s permutes them) and so we have a contradiction.
Thus, conclusion (a) of Lemma 4.5 cannot hold in our counterexample.

Assume that condition (b) of Lemma 4.5 does not hold for any pair Vi, Vj , i 6=
j. By Lemma 4.5, for every distinct pair i, j, x has an eigenspace of dimension
at least 3 on Vi ⊥ Vj and so x induces a scalar transformation on all but at
most one of the Vk’s. Indeed, x induces the same scalar transformation on Vk

for all k ≥ 2 and has one-dimensional eigenspaces in V1. We write V1 = 〈u1, v1〉
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where ux
1 = −µu1 and vx

1 = µv1 for some µ ∈ F (with µ2 = λ) and assume that
x induces scalar multiplication by µ on each Vk, k ≥ 2. Thus, x (represented
by diag(−µ, µ, . . . , µ)) has determinant −µ2m and so (since x ∈ G′), µ2m = −1.
Then µ 6= ±1 and so V is not an orthogonal space.

Suppose that V is symplectic or unitary. If u, v ∈ V2 such that (u, v) 6= 0,
then (u, v) = (ux, vx) = (µu, µv) = µq+1(u, v). Therefore, µq+1 = 1 and so
(u1, v1) = (ux

1 , vx
1 ) = (−µu1, µv1) = −µq+1(u1, v1) = −(u1, v1). Hence, 〈u1〉 ⊥

〈v1〉 and so V = 〈u1〉 ⊥ 〈u1〉⊥. In particular, since V is non-degenerate, it can
not be a symplectic space.

If V is a unitary space, the fact that µq+1 = 1 but µ2m = −1 implies that
q ≡ −1 mod 4. On the other hand, if G is the general linear group (so |F | = q),
the fact that (µm)2 = −1 implies that q ≡ 1 mod 4. Let G2 be the corresponding
2-dimensional classical group. If D2 is the group of 2×2 diagonal matrices in G2

whose diagonal entries are 2-elements of F× and y0 =
(

0 1
1 0

)
, the semidirect

product Q = [D2]〈y0〉 is a Sylow 2-subgroup of G2. Moreover, the matrices( −µ 0
0 µ

)
and

(
0 µ
µ 0

)
are conjugate in G2 (via α

(
1 1
1 −1

)
where, in

the unitary case, αq+1 = 2−1) and so x (represented by diag(−µ, µ, . . . , µ)) is
G-conjugate to a non-diagonal element of S. But since S ∼= Q o Tm, if D is the
subgroup of diagonal matrices in S, then x ∈ D £ S and so all S-conjugates of
x are diagonal. But then x̄ = xZ(G) cannot be unfused in G/Z(G).

Therefore, we may assume that condition (b) of Lemma 4.5 holds for some
pair Vi, Vj which, without loss of generality, we may assume are V1 and V2.
Thus, V is an orthogonal space with all Vi’s isometric to Πε, x is an involution
and if E1 and E−1 are the eigenspaces of x in V ,

(V1 ⊥ V2) ∩ E1
∼= (V1 ⊥ V2) ∩ E−1

∼= Π−ε

and
V1 ∩ E1

∼= V1 ∩ E−1 6∼= V2 ∩ E1
∼= V2 ∩ E−1.

If j ≥ 3, we have shown that conclusion (a) of Lemma 4.5 can not hold for
either V1 ⊥ Vj or V2 ⊥ Vj . But condition (b) can hold for at most one of
these subspaces (because there are only two isometry classes of one-dimensional
orthogonal spaces), and so it follows that Vj ≤ E±1. Moreover, if j, k ≥ 3,
neither (a) nor (b) holds for Vj ⊥ Vk and so x must induce the same scalar
transformation on both summands. Replacing x by −x if necessary, we may
assume that x induces the identity map on the subspace V3 ⊥ . . . ⊥ Vm.

It follows that if [V, x] = {−v + vx : v ∈ V }, then [V, x] = (V1 ⊥ V2)∩E−1 =
(V1 ∩ E−1) ⊥ (V2 ∩ E−1). Let V1 ∩ E−1 = 〈u1〉 and V2 ∩ E−1 = 〈u2〉. Since
〈u1〉 and 〈u2〉 are not isometric, we may assume that (u1, u1) ∈ (F×)2 (and
so after rescaling, (u1, u1) = 1) and (u2, u2) = c ∈ F\(F×)2. If χ denotes
the Wall form of x ([9], p. 153), then since ui = 1

2 (ui − ux
i ) for i = 1, 2,

χ(ui, v) = 1
2 (ui, v) for all v ∈ [V, x] and in particular, the matrix of χ with

respect to {u1, u2} is X =
(

1
2 0
0 c

2

)
. The spinor norm of x (the discriminant

of χ) is (det X)F 2 = c
4F 2 6= F 2 and so x /∈ G′ ([9], Theorem 11.51). This

contradiction completes the proof of the theorem.

Corollary 4.7 No non-abelian simple group of classical type in odd character-
istic contains an unfused involution.
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Proof. Theorem 1 and Corollary 4.4.

5 The exceptional groups in odd characteristic

Assume that a minimal counterexample to the Main Theorem is an exceptional
simple group of Lie type in odd characteristic. G cannot be one of G2(q),
2G2(32m+1) or 3D4(q) since each contains a unique conjugacy class of involu-
tions. In each of the remaining cases, there is an involution z ∈ Z(S) such that
z ∈ L £ CG(z), CG(z)/L and Z(L) are cyclic and L/Z(L) is as indicated in the
following table ([1], [7]):

G L/Z(L)

F4(q) PΩ9(q)
E6(q) PΩ+

10(q)
2E6(q) PΩ−10(q)
E7(q) L2(q)× PΩ+

12(q)
E8(q) PΩ+

16(q)

Except in the case G = E7(3), we conclude from Lemma 2.4 that x ∈ Z(L),
whence x = z ∈ Z(S), a contradiction. If G = E7(3), then L/O2,2′(L) ∼=
PΩ+

12(3) and Corollary 2.5 implies that x ∈ O2(L). But SL2(3) has a unique
involution and so we again have the contradiction x = z ∈ Z(S).

6 The groups of Lie type in characteristic 2

We assume in this section that the minimal counterexample G is a simple group
of Lie type over the field Fq of order q = 2k.

Let x ∈ S ∈ Syl2(G) and B = NG(S). Let N ≤ G such that (G,B, N, Σ) is
a Tits system (with B and N a (B, N)-pair and Σ = {wi : i ∈ I} a distinguished
set of involutary generators of the Weyl group W = N/B∩N). I may, of course,
be identified with a base of the corresponding root system.

Lemma 6.1 If L is a centerless finite group of Lie type in characteristic 2 then
either L′ is simple or L is solvable and isomorphic to one of A1(2), D2(2),
2A2(2) or 2B2(2). In the solvable cases, L′ has odd order unless L ∼= 2A2(2).
(This exception is a Frobenius group of order 72 with a quaternion Sylow 2-
subgroup.)

Proof. See Proposition 2.9.2 and Theorem 5.1.1 of [8].

Lemma 6.2 Let P be a maximal parabolic subgroup of G containing B and let
L be a Levi factor of P , so O2′(L) is a central product of groups of Lie type in
characteristic 2. If 2A2(2) does not appear as a factor in this decomposition of
O2′(L), then x ∈ O2(P ) and P = NG(〈xS〉).

Proof. If P = P/O2(P ), then P ∼= L, whence O2′(P/Z(P )) = O2′(P )Z(P )/Z(P )
is a direct product L1×L2× . . .×Lk of centerless groups of Lie type in charac-
teristic 2. By the preceding lemma, O2′(P/Z(P ))′ = L′1 × L′2 × . . .× L′k where
each L′i is either simple or of odd order. Moreover, since P ≥ B ≥ S, x̄Z(P )
is an unfused element of O2′(P/Z(P )) and so by Corollary 2.5, x ∈ O2(P ) and
P ≤ NG(〈xS〉). By the maximality of P , P = NG(〈xS〉).
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Lemma 6.3 NG(〈xS〉) is the unique maximal parabolic of G containing B.

Proof. Let P be a maximal parabolic containing B. By the previous lemma,
it is enough to show that no Li is isomorphic to 2A2(2).

Suppose Li
∼= 2A2(2) for some i. There is a lattice isomorphism between

subsets J of I and parabolics PJ of G containing B (e.g. [2], Theorem 8.3.4).
Identifying I with the nodes of the Dynkin diagram for G, for any J ⊆ I the
types of factors in the central product decomposition of O2′(LJ) (where LJ is a
Levi factor of PJ) are those of the components of the subdiagram whose nodes
correspond to elements of J . Therefore, G must be a group of twisted type,
consisting of elements of a Chevalley group H (over a finite extension of Fq)
fixed by a certain automorphism γ which induces a symmetry of the Dynkin
diagram of H. The parabolics of G containing B correspond to γ-invariant sets
of nodes of this diagram. Moreover, a Levi factor of the parabolic corresponding
to such a set J consists of the elements fixed by γ in a Levi factor of the parabolic
of H corresponding to J . (See [2], Chapter 13 and [8], p.180-181.)

Two nodes connected by a single bond lie in the same orbit of a symmetry
of a Dynkin diagram only for diagrams of type A2m and hence, we conclude
that H ∼= A2m(2), and G ∼= 2A2m(2), m ≥ 2. Moreover, of the m maximal
parabolics of 2A2m(2) containing a particular Borel subgroup B, 2A2(2) appears
in only one. (If the nodes of the Dynkin diagram A2m are sequentially labelled
1, 2, . . . , 2m, this parabolic has a Levi factor of type A1(22) × . . . × A1(22)×
2A2(2) and corresponds to the omission of the nodes labelled m−1 and m+2.)
By the previous lemma, m− 1 = 1 and so G ∼= 2A4(2) ∼= PSU5(2).

A Sylow 2-subgroup of PSU5(2) contains only one class C of non-central
involutions and so we may assume that x ∈ S ∩ C. Moreover, there is an el-
ementary abelian subgroup X ≤ S of order 24 which contains 10 involutions
in C (e.g. [4]), and so we may assume that one of these is x. Then for some
y ∈ X ∩C, xy is also in X ∩C and so x, y and xy are all conjugate in S. This
contradicts Lemma 2.1 and completes the proof of the lemma.

The contradiction. If G is a Chevalley group (i.e. of untwisted type) then
because of the lattice isomorphism between parabolics containing B and subsets
of I, the previous lemma implies that |I| = 1 and so G = A1(q) ∼= L2(q), q = 2k.
But this group has abelian Sylow 2-subgroups and so, by Lemma 2.3, is not a
counterexample to the Main Theorem.

If G is a twisted group corresponding to a Chevalley group H and an auto-
morphism γ, then the previous lemma implies that the symmetry induced by γ
on the Dynkin diagram of H is transitive on the nodes. Therefore, H = A2(q),
B2(q) or D2(q), q = 2k and correspondingly, G = 2A2(q) ∼= PSU3(q), 2B2(q) ∼=
Sz(q) or 2D2(q) ∼= PΩ−4 (q) ∼= L2(q2). The last of these groups has abelian
Sylow 2-subgroups while those of the first two are of nilpotence class 2. Again,
this contradicts Lemma 2.3 and so no counterexample to the Main Theorem is
to be found among groups of Lie type in characteristic 2.

7 The sporadic groups

Assume that the sporadic group G is a minimal counterexample to the Main
Theorem with unfused involution x ∈ S ∈ Syl2(G). The sole reference here will
be the Atlas [4]. Immediately eliminated are the groups with a unique conjugacy
class of involutions: M11, M22, M23, J1, J3, McL, LyS, O′N and Th.
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Note that by Lemma 2.1, S cannot contain a fours subgroup all of whose
involutions are conjugate in S and so an unfused involution x of G cannot lie
in a fours group E ≤ G all of whose involutions are G-conjugate. The groups
M12, J2, Suz, Ru, He, Co3, Fi′24 and M each have a unique class of involutions
not in the center of a Sylow 2-subgroup and a fours group all of whose non-
identity elements are conjugate to a representative of this class so these groups
are eliminated as possible counterexamples.

If H and K are maximal subgroups of odd index such that (H/O2,2′(H))′ and
(K/O2,2′(K))′ are each direct products of non-abelian simple groups, Corollary
2.5 implies that H = K. Choosing H and K as indicated (in Atlas notation),
this yields a contradiction for each sporadic group in the table below.

G H Structure of H K Structure of K

HS N(2A3) 43 : L3(2) N(2A) 4.24 : S5

M24 N(2A4) 24 : A8 N(26) 26 : (L3(2)× S3)
HN N(2B) 21+8

+ .(A5 ×A5).2 N(2B3) 23.22.26.(3× L3(2)
Co2 N(210) 210 : M22 : 2 N(2A) 21+8

+ : PSp6(2)
Fi22 N(210) 210 : M22 N(2B4) 25+8 : (S3 ×A6)
Fi23 N(2A) 2.F i22 N(211) 211.M23

Co1 N(211) 211 : M24 N(2A) 21+8
+ : PΩ+

8 (2)
J4 N(211) 211 : M24 N(2A3) 23+12.(S5 × L3(2))
B N(2B) 21+22

+ .Co2 N(2B8) 29.216.PSp8(2)

This exhausts the sporadic groups and eliminates the last of the possibilities
for a counterexample to the Main Theorem.
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