UNFUSED INVOLUTIONS IN FINITE GROUPS - AN ADDENDUM

Martin R. Pettet
Department of Mathematics
The University of Toledo
Toledo, Ohio, U.S.A. 43606
E-mail: mpettet@math.utoledo.edu

Abstract

If p is a prime, r is an integer and $p^{r}>2$, there exist infinitely many finite simple non-abelian groups containing an element x of order p^{r} such that if P is a Sylow p-subgroup of G containing $x, x^{G} \cap P=x^{P}$.

Let p be a prime. In [1], a p-element x of a finite group G was said to be unfused if for some (and hence, for any) Sylow p-subgroup P of G containing x, all G-conjugates of x in P are P-conjugate to it (i.e. $x^{G} \cap P=x^{P}$). The main result was that no non-abelian finite simple group can contain an unfused involution and in fact, if x is an unfused involution in an arbitrary finite group G, then $x \notin[G, x]$ (a result which bears some formal similarity to Glauberman's Z^{*}-theorem). Mentioned in the introduction was the fact that while this conclusion fails in general for elements of order 4, it holds for elements of arbitary p-power order if G is p-solvable. In this addendum, we record a simple demonstration that no such generalization of the unfused involution theorem can apply to arbitrary finite groups. In fact, for any prime power $p^{r} \neq 2$, there exist infinitely many finite, simple, non-abelian groups containing unfused elements of order p^{r}.

To facilitate a relatively uniform treatment of the cases $p=2$ and $p>2$, we let $p^{*}=4$ if $p=2$ and $p^{*}=p$ if $p>2$. For any positive integer i, let i_{p} denote the largest power of p dividing i. Note that if k, i are integers with $1 \leq i \leq k$ and $d=\operatorname{gcd}(k, i)$ then the binomial coefficient $\binom{k}{i}$ is divisible by $\frac{k}{d}$. For $\frac{k}{d}\binom{k-1}{i-1} / \frac{i}{d}=\binom{k}{i} \in \mathbf{Z}$ and so, since $\operatorname{gcd}\left(\frac{i}{d}, \frac{k}{d}\right)=1, \frac{i}{d}$ divides $\binom{k-1}{i-1}$, whence, $\binom{k}{i} / \frac{k}{d}=\binom{k-1}{i-1} / \frac{i}{d} \in \mathbf{Z}$.

An elementary number theoretic observation is needed to identify Sylow p-subgroups in our examples; namely, if q is an integer such that $q \equiv 1(\bmod$ $\left.p^{*}\right)$ then $\left(q^{k}-1\right)_{p}=k_{p}(q-1)_{p}$ for any positive integer k. Let $(q-1)_{p}=p^{*} p^{t}$ so $q=a p^{*} p^{t}+1$ with $\operatorname{gcd}(a, p)=1$ and $t \geq 0$. For any positive integer k,

$$
q^{k}-1=\left(a p^{*} p^{t}+1\right)^{k}-1=\sum_{i=0}^{k-2} a^{k-i}\binom{k}{i}\left(p^{*} p^{t}\right)^{k-i}+a k p^{*} p^{t} .
$$

Let $k_{p}=p^{r}$. We claim that for each $i, 0 \leq i \leq k-2$, the corresponding term in the summation above is divisible by $p^{*} p^{r+t+1}$. Let $i_{p}=p^{u}$ and $j=\min (r, u)$. By the remark above, $\binom{k}{i}_{p} \geq p^{r-j}$ and so it suffices to show
that p^{j+1} divides $\left(p^{*}\right)^{k-i-1} p^{t(k-i-1)}$. Because $k-i-1 \geq 1$, we may assume that $j \geq 1$. Also $p^{j} \leq k-i$ (since, in fact, p^{j} divides $k-i$) and so it is enough to show that p^{j+1} divides $\left(p^{*}\right)^{p^{j}-1}$. But for any $j \geq 1, j+1 \leq 2\left(2^{j}-1\right)$ and if $p>2$ then $j+1 \leq p^{j}-1$, so the claim is proved.

If $s=k / k_{p}$, it follows that $q^{k}-1=c p^{*} p^{r+t+1}+a s p^{*} p^{r+t}=p^{*} p^{r+t}(c p+a s)$ for some $c \in \mathbf{Z}$. Since $\operatorname{gcd}(a s, p)=1,\left(q^{k}-1\right)_{p}=p^{*} p^{r+t}=k_{p}(q-1)_{p}$ as required.

We now proceed with the construction of the promised examples. Let p be a prime and assume that $p^{r} \neq 2$. Let F_{q} be a finite field of order q where $(q-1)_{p} \geq p^{*} p^{r}$ and let $n \geq 3$ be a divisor of $(q-1)_{p} / p^{r}$. Let $V=\left(F_{q}\right)^{n}$ be the natural $G L_{n}\left(F_{q}\right)$-module with standard basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $V_{i}=\left\langle v_{i}\right\rangle$ for $1 \leq i \leq n$.

Let $G=S L_{n}\left(F_{q}\right)$ and let x be the $n \times n$ diagonal matrix $\operatorname{diag}(\lambda, \mu, \ldots, \mu)$, where μ is a primitive $n p^{r}$-th root of unity in F_{q} and $\lambda=\mu^{1-n}$ (so $x \in G$). Note that $\lambda^{p^{r}}=\mu^{p^{r}}$ but $\lambda^{p^{r-1}}=\mu^{p^{r-1}} \mu^{-n p^{r-1}} \neq \mu^{p^{r-1}}$ so $\bar{x}=x Z(G)$ has order p^{r} in $\bar{G}=G / Z(G) \cong P S L_{n}\left(F_{q}\right)$. We prove that \bar{x} is unfused in \bar{G}.

Let M denote the subgroup of monomial matrices in $G L_{n}\left(F_{q}\right)$ (i.e. those which permute the V_{i} 's) so $M=[D] X \cong\left(F_{q}^{\times}\right)$亿 Sym (n), where $D \cong\left(F_{q}^{\times}\right)^{n}$ and $X \cong \operatorname{Sym}(n)$ are the groups of $n \times n$ diagonal and permutation matrices, respectively. If $R \in \operatorname{Syl}_{p}(X)$ then $S=\left[O_{p}(D)\right] R \in \operatorname{Syl}_{p}(M)$. In fact, application of the number theoretic observation above to the formula $\left|G L_{n}\left(F_{q}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-1\right)$ yields that $\left|G L_{n}\left(F_{q}\right)\right|_{p}=|M|_{p}$ and so $S \in \operatorname{Syl}_{p}\left(G L_{n}\left(F_{q}\right)\right)$. Therefore, if $P=S \cap G$, then $x \in P \in \operatorname{Syl}_{p}(G)$ and P consists entirely of monomial matrices. Note that $X \cap G \cong \operatorname{Alt}(n)$ and $R \cap G \in \operatorname{Syl}_{p}(X \cap G)$, whence, because n is a power of p and $n \geq 3, R \cap G$ is transitive on $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$.

Assume now that $g \in G$ such that $x^{g} \in P$ (so x^{g} permutes the V_{i} 's). The minimal polynomial of x^{g} is the quadratic $m(t)=(t-\lambda)(t-\mu)$ and so for any $v \in V$, the set $\left\{v, v^{x^{g}}, v^{\left(x^{g}\right)^{2}}\right\}$ is linearly dependent. In particular, every orbit of $\left\langle x^{g}\right\rangle$ in $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ has length at most 2. Therefore, $\left(x^{g}\right)^{2}$ leaves each V_{i} invariant and so each $V_{i}^{g^{-1}}$ is invariant under $x^{2}=\operatorname{diag}\left(\lambda^{2}, \mu^{2}, \ldots, \mu^{2}\right)$. Since $\lambda^{2} \neq \mu^{2}$, this implies that each $V_{i}^{g^{-1}}$ is contained either in V_{1} or in $V_{2} \oplus V_{3} \oplus \ldots \oplus V_{n}$. But then $\left(V_{i}^{g^{-1}}\right)^{x}=V_{i}^{g^{-1}}$ for all i and so, in fact, each V_{i} is invariant under x^{g} (i.e. x^{g} is a diagonal matrix). The eigenvalues of x^{g} being the same as those of x, there is an integer $k \in\{1,2, \ldots, n\}$ such that x^{g} has eigenvalue λ on V_{k} and μ on V_{j} for all $j \neq k$. But if $h \in R \cap G$ such that $V_{1}^{h}=V_{k}$, then this is true also of x^{h}. Hence, $x^{g}=x^{h} \in x^{P}$ and so $\bar{x}^{\bar{g}} \in \bar{x}^{\bar{P}}$. This proves that $\bar{x}^{\bar{G}} \cap \bar{P}=\bar{x}^{\bar{P}}$ and so \bar{x} is unfused in the simple group \bar{G}.

Acknowledgements. The author is indebted to the Department of Mathematics and Statistics at McGill University for its kind hospitality during the preparation of this note.

References

[1] Martin R. Pettet, Unfused involutions in finite groups, Comm. Algebra (to appear).

