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Abstract

If p is a prime, r is an integer and pr > 2, there exist infinitely many
finite simple non-abelian groups containing an element x of order pr

such that if P is a Sylow p-subgroup of G containing x, xG ∩ P = xP .

Let p be a prime. In [1], a p-element x of a finite group G was said to be
unfused if for some (and hence, for any) Sylow p-subgroup P of G containing
x, all G-conjugates of x in P are P -conjugate to it (i.e. xG ∩ P = xP ). The
main result was that no non-abelian finite simple group can contain an
unfused involution and in fact, if x is an unfused involution in an arbitrary
finite group G, then x /∈ [G, x] (a result which bears some formal similarity
to Glauberman’s Z∗-theorem). Mentioned in the introduction was the fact
that while this conclusion fails in general for elements of order 4, it holds for
elements of arbitary p-power order if G is p-solvable. In this addendum, we
record a simple demonstration that no such generalization of the unfused
involution theorem can apply to arbitrary finite groups. In fact, for any
prime power pr 6= 2, there exist infinitely many finite, simple, non-abelian
groups containing unfused elements of order pr.

To facilitate a relatively uniform treatment of the cases p = 2 and p > 2,
we let p∗ = 4 if p = 2 and p∗ = p if p > 2. For any positive integer i, let ip
denote the largest power of p dividing i. Note that if k, i are integers with
1 ≤ i ≤ k and d = gcd(k, i) then the binomial coefficient
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d ∈ Z.
An elementary number theoretic observation is needed to identify Sylow

p-subgroups in our examples; namely, if q is an integer such that q ≡ 1 (mod
p∗) then (qk−1)p = kp(q−1)p for any positive integer k. Let (q−1)p = p∗pt

so q = ap∗pt + 1 with gcd(a, p) = 1 and t ≥ 0. For any positive integer k,

qk − 1 = (ap∗pt + 1)k − 1 =
k−2∑

i=0

ak−i

(
k

i

)
(p∗pt)k−i + akp∗pt.

Let kp = pr. We claim that for each i, 0 ≤ i ≤ k − 2, the corresponding
term in the summation above is divisible by p∗pr+t+1. Let ip = pu and
j = min(r, u). By the remark above,
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)
p
≥ pr−j and so it suffices to show
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that pj+1 divides (p∗)k−i−1pt(k−i−1). Because k− i− 1 ≥ 1, we may assume
that j ≥ 1. Also pj ≤ k−i (since, in fact, pj divides k−i) and so it is enough
to show that pj+1 divides (p∗)pj−1. But for any j ≥ 1, j + 1 ≤ 2(2j − 1) and
if p > 2 then j + 1 ≤ pj − 1, so the claim is proved.

If s = k/kp, it follows that qk−1 = cp∗pr+t+1+asp∗pr+t = p∗pr+t(cp+as)
for some c ∈ Z. Since gcd(as, p) = 1, (qk − 1)p = p∗pr+t = kp(q − 1)p as
required.

We now proceed with the construction of the promised examples. Let p
be a prime and assume that pr 6= 2. Let Fq be a finite field of order q where
(q − 1)p ≥ p∗pr and let n ≥ 3 be a divisor of (q − 1)p/pr. Let V = (Fq)n

be the natural GLn(Fq)-module with standard basis {v1, v2, . . . , vn} and let
Vi = 〈vi〉 for 1 ≤ i ≤ n.

Let G = SLn(Fq) and let x be the n×n diagonal matrix diag(λ, µ, . . . , µ),
where µ is a primitive npr-th root of unity in Fq and λ = µ1−n (so x ∈ G).
Note that λpr

= µpr
but λpr−1

= µpr−1
µ−npr−1 6= µpr−1

so x̄ = xZ(G) has
order pr in Ḡ = G/Z(G) ∼= PSLn(Fq). We prove that x̄ is unfused in Ḡ.

Let M denote the subgroup of monomial matrices in GLn(Fq) (i.e. those
which permute the Vi’s) so M = [D]X ∼= (F×

q ) o Sym(n), where D ∼= (F×
q )n

and X ∼= Sym(n) are the groups of n × n diagonal and permutation ma-
trices, respectively. If R ∈ Sylp(X) then S = [Op(D)]R ∈ Sylp(M). In
fact, application of the number theoretic observation above to the formula
|GLn(Fq)| = qn(n−1)/2 ∏n

i=1(q
i − 1) yields that |GLn(Fq)|p = |M |p and so

S ∈ Sylp(GLn(Fq)). Therefore, if P = S ∩ G, then x ∈ P ∈ Sylp(G) and
P consists entirely of monomial matrices. Note that X ∩ G ∼= Alt(n) and
R ∩G ∈ Sylp(X ∩G), whence, because n is a power of p and n ≥ 3, R ∩G
is transitive on {V1, V2, . . . , Vn}.

Assume now that g ∈ G such that xg ∈ P (so xg permutes the Vi’s). The
minimal polynomial of xg is the quadratic m(t) = (t−λ)(t−µ) and so for any
v ∈ V , the set {v, vxg

, v(xg)2} is linearly dependent. In particular, every orbit
of 〈xg〉 in {V1, V2, . . . , Vn} has length at most 2. Therefore, (xg)2 leaves each
Vi invariant and so each V g−1

i is invariant under x2 = diag(λ2, µ2, . . . , µ2).
Since λ2 6= µ2, this implies that each V g−1

i is contained either in V1 or in
V2 ⊕ V3 ⊕ . . .⊕ Vn. But then (V g−1

i )x = V g−1

i for all i and so, in fact, each
Vi is invariant under xg (i.e. xg is a diagonal matrix). The eigenvalues of
xg being the same as those of x, there is an integer k ∈ {1, 2, . . . , n} such
that xg has eigenvalue λ on Vk and µ on Vj for all j 6= k. But if h ∈ R ∩G
such that V h

1 = Vk, then this is true also of xh. Hence, xg = xh ∈ xP and
so x̄ḡ ∈ x̄P̄ . This proves that x̄Ḡ ∩ P̄ = x̄P̄ and so x̄ is unfused in the simple
group Ḡ.
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