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Free actions of virtually FC-groups

By

Martin R. Pettet

Abstract. If an infinite group G admits a free action by a group of automorphisms A which is
virtually an FC-group and which has only finitely many orbits, then G is isomorphic to the additive
group of a field and the action is that of a group of semilinear transformations.

The FC-centre �(A) of a group A is the subgroup consisting of all elements α ∈ A

for which the conjugacy class αA of α in A is finite (i.e., those elements α for which the
centralizer CA(α) has finite index in A). A is said to be an FC-group if A = �(A). If
A acts as a group of automorphisms on a group G, it is said to act freely if the stabilizer
CA(g) of every element g ∈ G# = G\{1} is trivial. The main purpose of this note is to
record a short, almost self-contained proof of the following:

Theorem. Let G be an infinite group admitting a group of automorphisms A that acts
freely on G and has r orbits in G# = G\{1}, r < ∞. If A contains an FC-subgroup of
finite index, there is a (commutative) field E such that

(a) G is isomorphic to the additive group of E,
(b) �(A) is isomorphic to a subgroup of index r|A : �(A)| in the multiplicative group

E× = E\{0},
(c) A/�(A) is isomorphic to a group A of (field) automorphisms of E,
(d) under the identification of E+ with G, A corresponds to a group of semilinear

transformations x �→ axσ , x ∈ E, a ∈ E×, σ ∈ A.

The theorem may be viewed as a generalization of a theorem of W. Kreft [3] on near-
fields, the result there corresponding to the case that A is an FC-group whose action on G# is
transitive (Corollary 1). However, the argument presented here is entirely group theoretic.

P r o o f o f t h e t h e o r e m. Because �(A) contains every FC-subgroup of finite index in
A, |A : �(A)| < ∞. Note that if B is any subgroup of finite index in A and T is a left
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transversal for B in A (so A = ⋃

α∈T

αB), then each non-trivial A-orbit gA is a disjoint union

of the B-orbits (gα)B, α ∈ T , and so the number of B-orbits in G# is r|A : B| < ∞. We
begin with two observations about the action of A, the first of which is a slight modification
of an argument in [4].

(i) If |A : B| < ∞ and H is a B-invariant subgroup of G then, for any non-identity
element α of B ∩ �(A), the map h �→ h−1hα for h ∈ H is a bijection from H to itself.

Because A acts freely, the map θα : G → G defined by θα : g �→ g−1gα is certainly
injective. If C = CB(α), then |A : C| � |A : B||A : CA(α)| < ∞ and so there are only
finitely many C-orbits in G. Since θα maps C-orbits to C-orbits, its restriction to H is a
bijection from H to itself, as claimed.

(ii) If B � A with |A : B| < ∞, then G contains no proper, non-trivial B-invariant
subgroups.

|A : B ∩�(A)| � |A : B||A : �(A)| < ∞ and so we may assume that B = B ∩�(A) �
�(A). Let H be a non-trivial B-invariant subgroup of G. Each coset of H is infinite but
the number of B-orbits is finite and so if x ∈ G then x �= xβ ∈ xH for some β ∈ B#. Then
x−1xβ ∈ H , whence, by (i), x−1xβ = h−1hβ for someh ∈ H . Therefore, (xh−1)β = xh−1

and, since A acts freely, x = h ∈ H . We conclude that H = G, proving (ii).
Next, we show that G is abelian, again following [4]. Observe that each conjugacy

class in G contains at most one element from each �(A)-orbit. For if g, x ∈ G such that
x−1gx = gα �= g for some α ∈ �(A) then by (i), x = y−1yα for some y ∈ G and so
(ygy−1)α = ygy−1, forcing g = 1. Hence, the cardinality of each class is bounded above
by the number of �(A)-orbits. By a theorem of B. H. Neumann (e.g., [5, Theorem 4.35],
G′ is finite and so, because all non-trivial A-orbits are infinite, G′ = 1.

For the remainder of the argument, we write G additively.
If X is a subset of End(G) and θ ∈ End(G), let CX(θ) be the set of all η ∈ X such

that ηθ = θη. If E = {θ ∈ End(G) : |A : CA(θ)| < ∞} then E is a subring of End(G)
containing �(A) and is invariant under conjugation by A. If θ ∈ E and C = CA(θ),
|A : C| < ∞ and the kernel and image of θ are each C-invariant subgroups of G. By (ii),
if θ �= 0 then θ ∈ Aut(G) and so E is a division ring. Moreover, the multiplicative group
E× = E\{0} acts freely on G, for if θ ∈ E× and θ �= 1 then θ − 1 ∈ E× and so θ − 1 has
trivial kernel.

Fix an element g ∈ G#. If θ ∈ E×, let K = gCE(θ) = {gη : η ∈ CE(θ)}. Because CE(θ)

is an additive group, K is a subgroup of G. Moreover, K is invariant under CE×(θ) and
hence, under C�(A)(θ). By (ii), K = G and so CE×(θ) is transitive on G#. Because E×
acts freely on G, it follows that CE×(θ) = E×. Therefore, E× is abelian and E is a field.

G may be identified as the additive group E+ of the field E via the bijection θ �→ gθ ∈ G

for θ ∈ E. Because E× acts freely and transitively on G#, |E× : �(A)| = r|A : �(A)|,
the number of orbits of �(A) in G#. From the fact that �(A) � E× and |A : �(A)| < ∞,
it follows that CA(E×) � CA(�(A)) = �(A) and so the conjugation action of A induces
a faithful action of A/�(A) on E as a group A of automorphisms. This completes the proof
of statements (a), (b) and (c).

Finally, we may define an injective derivation σ : A → E× (whose restriction to �(A)

is the identity map) by gσ(α) = gα for all α ∈ A. Then for any θ ∈ E and α ∈ A,
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(gθ )α = (gα)θ
α = gσ(α)θα

(where θα = α−1θα) and so the action of α on E induced by
the isomorphism between G and E+ sends θ to σ(α)θα . Therefore, A is isomorphic to
a group of semilinear transformations of E, proving (d) and completing the proof of the
theorem.

The multiplicative group of a near-field N acts freely and transitively on the non-zero
elements of the additive group of N . Hence, the case r = 1 of the theorem may be
formulated as a generalization of a result of Kreft [3].

Corollary 1. An infinite near-field whose multiplicative group is a finite extension of an
FC-group is a field.

A permutation group � on a set � is said to be a Frobenius group if it is transitive and
all two-point stabilizers are trivial. The rank of � is the number of orbits in the induced
action of � on � × � or equivalently, the number of orbits of a point stabilizer A = �α

(where α ∈ �) on �. The (Frobenius) kernel G consists of the identity together with those
elements of � which have no fixed points. � is said to be split if this kernel is a (normal)
subgroup of �, in which case A is a complement of G in �. If the pair (G, A) satisfies
the hypotheses of the theorem, the corresponding semidirect product � = AG is a split
Frobenius group of finite rank on the set � of right cosets of A in � and so, because neither
the additive nor the multiplicative groups of an infinite field can be finitely generated, the
theorem may be regarded as an extension of Corollaries 1 and 2 of [4].

Corollary 2. Let � be an infinite split Frobenius group of finite rank with kernel G and
complement A. If A is a finite extension of an FC-group then G is abelian, A is abelian-
by-finite and both groups are infinitely generated.

Although it appears still to be open whether a Frobenius group of arbitrary finite rank
with abelian point stabilizers is necessarily split, this is the case if the group has rank two
(i.e., if it is sharply doubly transitive). In fact, using near-ring techniques, W. Kerby has
shown [2] that a rank two Frobenius group is split if the point stabilizers are FC-groups.
Whether this conclusion holds if the stabilizers are only virtually FC will not be resolved
here but a purely group theoretic proof of Kerby’s result may still be of some interest. The
argument below is essentially an elaboration of that used in Theorem 3.4B of [1] to treat
the case in which the stabilizers are abelian.

Corollary 3. Let � be an infinite doubly transitive Frobenius group on the set � and
assume that point stabilizers are FC-groups. Then there is a field E such that � is isomorphic
to the affine group Aff(1, E) of maps E → E of the form x �→ ax + b, (a ∈ E×, b ∈ E).
In particular, � is split.

P r o o f. We prove that � is split, the rest of the corollary being a direct consequence of
the theorem.

Let I = {x ∈ � : x2 = 1 �= x} and let G be the Frobenius kernel. For any α ∈ �, let
Zα = {1} ∪ (I ∩ �α). The first few observations are well-known.

(i) For any α, β ∈ �, α �= β, there exists a unique t ∈ I such that αt = β.
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In fact, by hypothesis, there is a unique t ∈ � such that (α, β)t = (β, α). Because
�α ∩ �β = 1, t ∈ I and is uniquely determined by α and β.

(ii) If α ∈ �, the conjugation action of �α is transitive on I\�α (and so I is a conjugacy
class in �).

For if s, t ∈ I\�α then, because �α is sharply transitive on �\{α}, αt = αsa = αsa
for

a unique a ∈ �α . By (i), sa = t .
(iii) |Zα| � 2 (so Zα � Z(�α)).
For suppose s, t ∈ I ∩�α . If β �= α then by (ii), sb = t for some b ∈ �β and so sb = bt .

Thus, αb = αsb = αbt , whence t ∈ �α ∩ �αb . Therefore, α = αb and so b ∈ �α ∩ �β = 1
and s = sb = t .

(iv) � = �αG.
It suffices to show that if β �= α then �β � �αG. By (i), βs = α for some s ∈ I and so

if g ∈ �β , gs ∈ �α . But ssg ∈ G, for if ssg ∈ �γ , γ ∈ �, then γ s = γ sg
so ssg = 1 by (i).

Therefore, g = gs(ssg) ∈ �αG.
(v) If G\{1} � ZαI for some α ∈ � then G is a subgroup (and so, by (iv), � is split).
For suppose that g, h ∈ G\{1} such that gh−1 /∈ G. Then a conjugate of gh−1 fixes

α and so, replacing g and h by corresponding conjugates, we may assume that gh−1 ∈ �α .
Write g = s1t1 and h = s2t2 where s1, s2 ∈ Zα and t1, t2 ∈ I . Then αt1 = αg = αh = αt2

and so by (i), t1 = t2 and gh−1 = s1s2. Because gh−1 �= 1, (iii) implies that either s1 = 1
and s2 ∈ I or s1 ∈ I and s2 = 1. In the first case, s2 is conjugate to t1 = g ∈ G by (ii) and
so s2 ∈ G ∩ Zα = 1, a contradiction. In the second, s1 is conjugate to t2 = h ∈ G, whence
s1 ∈ G ∩ Zα = 1, again a contradiction.

By (i), � = �αI for any α ∈ � and so the corollary will follow immediately from the
following stronger version of (v):

(vi) If G\{1} � �(�α)I for some α ∈ � then � is split.
Suppose that � is non-split so by (v), 1 �= g ∈ G\ZαI for some g ∈ �. Suppose also

that G\{1} � �(�α)I , whence, 1 �= gt ∈ �(�α) for some t ∈ I . For any β ∈ �\{α},
βgt �= β and so (i) implies that βgtsβ = β for a unique sβ ∈ I . Moreover, sβ /∈ �α

(else sβ ∈ Zα and gtsβ ∈ �α ∩ �β = 1, whence g = sβ t ∈ ZαI ) and so by (ii),

sβ = aβta−1
β for some aβ ∈ �α . Therefore, a

(gt)−1

β ga−1
β = gtaβta−1

β = gtsβ ∈ �β and

hence, 1 �= [aβ, (gt)−1]g ∈ �β
aβ .

Let C = C�α(gt) and suppose that β, γ ∈ � such that Caβ = Caγ (so (gt)aβ = (gt)aγ ).
We claim that βC = γ C . Indeed, [a, (gt)−1] = (gt)a(gt)−1 for any a ∈ G and so
[aβ, (gt)−1]g = [aγ , (gt)−1]g ∈ �β

aβ ∩ �γ aγ , whence, βaβ = γ aγ . But γ = βc for

some c ∈ �α and so βaβ = γ aγ = βcaγ . Therefore, aβa−1
γ c−1 ∈ �α ∩ �β = 1 and so

c = aβa−1
γ ∈ C, proving the claim.

If |�α : C| = n < ∞ then because �α is sharply transitive on �\{α}, C has precisely
n orbits in �\{α}. It follows from the preceding paragraph that if βC

i , 1 � i � n are the
n distinct orbits of C in �\{α}, the cosets Caβ1 , Caβ2 , . . . , Caβn are pairwise distinct and
therefore, comprise a complete system of right cosets of C in �α . In particular, aβi

∈ C for
some i, whence, if β = βi , g = [aβ, (gt)−1]g ∈ �β

aβ . This contradicts g ∈ G, completing
the proof of (vi) and of the corollary. �
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