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Abstract

For a finite group G, let E(G) denote the near-ring of functions generated by the semigroup,

End(G), of endomorphisms of G. We characterize when E(G) is maximal as a subnear-ring of

M0(G). A group G is an E-group if E(G) is a ring. We give a new characterization of finite E-

groups and investigate the problem of determining, for finite E-groups, when E(G) is maximal

as a ring in M0(G).
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I INTRODUCTION

Let G = (G, +) be a group written additively, +, and with identity 0 and let M0(G) :=

{f : G → G|f(0) = 0} be the near-ring of zero preserving functions on G. Recently ([12]),

Neumaier characterized all maximal subnear-rings of M0(G) for finite G. Now, when G is abelian,

the collection End(G) of endomorphisms of G is a ring in M0(G). Using results of Neumaier,

Kreuzer and Maxson, ([8]) showed that for any abelian group G, End(G) is a maximal subnear-ring

of M0(G) if and only if G ∼= Z3 or G is a finite elementary abelian 2-group, i.e., G ∼= (Z2)n for some

positive integer n. It was also established in [8] that, for any torsion abelian group G, End(G) is a

maximal ring in M0(G).

As is well-known, for nonabelian groups G, the sum of two endomorphisms need not be an

endomorphism. Thus for nonabelian groups G, one considers the subnear-ring E(G) of M0(G),

generated by the semigroup, End(G) of endomorphisms of G. When G is finite each element of

E(G) is a sum of endomorphisms and we use this in the sequel without further mention.

In this paper we consider the natural extensions of [8] to finite nonabelian groups. In particular,

for a finite nonabelian group G, we consider the following two questions:

(Q1) When is E(G) maximal as a subnear-ring of M0(G)?

(Q2) If E(G) is a ring, when is E(G) maximal as a ring in M0(G)?

In the next section we give a complete answer to (Q1). We also find a rather curious connection

with the action of the automorphism group, Aut(G), on G.

To investigate (Q2) one should know when E(G) is a ring. This happens when G is an E-group.

A short history, some known results and some new results on E-groups are given in Section III. In

particular, we give a new characterization of E-groups similar to that known for I-groups. (Recall

a group G is an I-group if the near-ring, I(G), generated by the inner automorphisms of G is a

ring.)

Then in Section IV we give some partial results on (Q2). However, a characterization of those

finite E-groups G for which E(G) is maximal as a ring in M0(G) remains open.

Convention: For the remainder of this paper, unless stated to the contrary, G will denote a finite

group written additively. Moreover, a “maximal substructure” always means a proper substructure.

Recall that for a, b ∈ G, the commutator, [a, b], is defined by [a, b] = −a− b + a + b. Moreover, for

x ∈ G, α ∈ Aut(G), [x, α] = −x + α(x).
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II E(G)E(G)E(G) MAXIMAL AS A SUBNEAR-RING OF M0(G)M0(G)M0(G)

In this short section we show that for any finite nonabelian group G, E(G) is not a maximal

subnear-ring of M0(G). Combining this with a result from [8] we get a characterization of those

finite groups G for which E(G) is a maximal subnear-ring of M0(G).

Lemma II.1. Let G be a finite nonabelian group. G has no nonzero, proper fully invariant sub-

groups if and only if E(G) = M0(G).

Proof. If G has a fully invariant subgroup H, {0} � H � G then for each σ ∈ E(G), σ(H) ⊆ H but

this is not true for all f ∈ M0(G). The converse is well-known, e.g. Meldrum’s book, [11], Theorem

10.11.

Theorem II.2. For a finite nonabelian group G, E(G) is not a maximal subnear-ring of M0(G).

Proof. If E(G) is a maximal subnear-ring of M0(G), then E(G) $ M0(G) so, by the above lemma,

G must have a proper, nonzero fully invariant subgroup, say I. Now I is a normal subgroup of

G and E(G)(I) ≤ I so I is an E(G)-ideal of G. But then G is not a simple E(G)-module which

contradicts Theorem 4.3 of [12]. Hence the result.

Corollary II.3. Let G be a finite group. Then E(G) is a maximal subnear-ring of M0(G) if and

only if G ∼= Z3 or G ∼= (Z2)n, n a positive integer.

Proof. The result follows directly from the above theorem and Theorem 2.3 of [8].

The groups of the above corollary have a further interesting characterization. Recall that a

transitive permutation group, A, on some set X is primitive or acts primitively on X if the one

point stabilizers Ax, x ∈ X, are maximal in A. If A is 2-transitive on X, it is straightforward to

verify that A is primitive on X.

Now let A = Aut(G), G finite. If A is transitive on G∗ = G− {0}, then all elements of G∗ have

the same prime order p. Now, since G is a p-group, the commutator subgroup, [G, G] is a proper

subgroup, and, using the transitivity of A we find [G, G] = {0}. Thus G is an elementary abelian

p-group, a vector space over Zp. For x ∈ G∗, Ax ≤ NA(〈x〉) ≤ A and since NA(〈x〉) contains all

the scalar multiplications, |NA(〈x〉)/Ax| = |Aut(〈x〉)| = p − 1. If NA(〈x〉) = Ax then p − 1 = 1 or

p = 2.

Thus, if p > 2 then NA(〈x〉) = A and so dimZp(G) = 1. Then |A/Ax| = |Na(〈x〉)/Ax| = p− 1.

Since Ax is maximal in A, p− 1 must be a prime so p = 3.
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Conversely if G ∼= Z3 or G ∼= (Z2)n, n ≥ 1, then A = Aut(G) acts primitively on G∗. For

if C ∼= Z3 or G ∼= Z2, this is clear. Furthermore, if G ∼= (Z2)n, n ≥ 2, then any pair of distinct

nonzero elements of G can be extended to an ordered basis and so we see Aut(G) is 2-transitive on

G∗. From above, we get that Aut(G) is primitive on G∗.

Corollary II.4. Let G be a finite group. The following are equivalent:

i) E(G) is a maximal subnear-ring of M0(G);

ii) G ∼= Z3 or G ∼= (Z2)n, n ≥ 1;

iii) Aut(G) is primitive on G∗.

It would be interesting and hopefully instructive to have a direct proof of the equivalence of

i) and iii) in the above corollary. That is, how does the maximality of E(G) follow from the

maximality of the one-point stabilizers Aut(G)x, x ∈ G∗?

III EEE-GROUPS

Recall that an E-group is a group G such that the subnear-ring, E(G), generated by the

semigroup, End(G), of endomorphisms of G is a ring. Every abelian group is an E-group and these

were the only known examples until the early 1970’s. The first examples of nonabelian E-groups

were given by Faudree, [5], in 1971. For more details on the history and some preliminary results,

see Section 3 of Malone’s expository paper, [10].

Prior to the discovery of these nonabelian E-groups, A. Chandy [4] characterized I-groups,

i.e. those groups such that the near-rings, I(G), generated by the inner automorphisms of G is

a ring. These are 2-Engel groups which, as is known, can be characterized by the property that

the centralizer, CG(x), of each element x ∈ G is a normal subgroup of G [15]. Of course one

also has A-groups, i.e., those groups G such that the near-ring, A(G), generated by the group of

automorphisms, Aut(G) is a ring. For further details on I-groups, A-groups, and E-groups we

again refer to Malone’s paper, [10], and to the exposition by Saad and Thomsen, [16]. In their

paper, Saad and Thomsen mention that no characterization of E-groups like that of I-groups is

known, nor are there any examples of A-groups that are not E-groups. In this section we give such

a characterization of E-groups and also give an example of an A-group which is not an E-group.

Suppose G is a finite nilpotent group so G is the direct sum of its Sylow p-subgroups, Sp. Since

the restriction of each σ ∈ E(G) to Sp determines a map in E(Sp), one finds that E(G) ∼= ⊕E(Sp).
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From this we see that, to investigate finite E-groups, it suffices to consider p-groups that are also

E-groups. We often refer to such groups as pE-groups.

Our first result in this section is essentially Theorem 3.1 of Caranti, [3], but without the hy-

pothesis of nilpotence class 2.

Lemma III.1 (Caranti, [3]). Let G be a finite p-group, p > 2. Then following are equivalent:

i) G is an E-group;

ii) [a, α(a)] = 0, ∀a ∈ G, ∀α ∈ End(G);

iii) [α(a), b] = [a, α(b)], ∀a, b ∈ G, ∀α ∈ End(G);

iv) [α(a), β(b)] = [β(a), α(b)], ∀a, b ∈ G, ∀α, β ∈ End(G).

Proof. If G is an E-group, then E(G) has abelian addition. Hence each α ∈ End(G), commutes

with the identity G. Thus i) ⇒ ii). We conclude by showing ii) ⇒ iii) since the remainder is as in

Caranti, [3]. Let a, b ∈ G. Then, by ii), a− b commutes with α(a− b) = α(a)− α(b), so

α(a)− α(b) + a− b = a− b + α(a)− α(b).

Adding −a to the left and b to the right on both sides of this equation, we obtain

−a + α(a)− α(b) + a = −b + α(a)− α(b) + b.

Because −a and b commute with α(a) and −α(b) respectively,

α(a)− a− α(b) + a = −b + α(a) + b− α(b).

Adding −α(a) to the left and α(b) to the right on both sides of this equation yields

−a− α(b) + a + α(b) = −α(a)− b + α(a) + b

so [a, α(b)] = [α(a), b].

We note that Jabara ([7], Lemma 1a) also realized that part iii) of the above lemma holds

without the nilpotence class 2 hypothesis.

Corollary III.2. If G is a finite E-group of odd order, then the center of G, Z(G), is a fully

invariant subgroup of G.
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Proof. Let c ∈ Z(G) and α ∈ End(G). Then from iii) of the above lemma, [α(c), a] = [c, α(a)] = 0

since c ∈ Z(G). Thus α(c) ∈ Z(G).

The results in Sections 3 and 4 of [3] depend on the above lemma. A study of these sections

show that the results of the lemma are used but not the nilpotence hypothesis of class 2. Thus this

hypothesis can be omitted in these results. As an example we now give a (corrected) new proof of

Caranti’s Theorem 3.6 without the class 2 or exponent p2 hypotheses.

As usual, we let Autc(G) := {α ∈ Aut(G)| − g + α(g) ∈ Z(G), ∀g ∈ G} denote the normal

subgroup of central automorphisms of G.

Theorem III.3 ([3], Theorem 3.6). If G is a pE-group of odd order, then Aut(G)/Autc(G) is

abelian of odd order.

Proof. Let α, β ∈ Aut(G). Three applications of part iii) of Lemma III.1 give for x, y ∈ G,

[x, [α, β]y] = [x, (βα)−1αβ(y)] = [α−1β−1(x), αβ(y)] = [β−1(x), β(y)] = [x, y]

so x[α,β](y) = xy. Therefore [α, β](y) − y ∈ Z(G) for all y ∈ G. Thus [α, β] ∈ Autc(G). But this

means [Aut(G),Aut(G)] ≤ Autc(G) so Aut(G)/Autc(G) is abelian. (This is essentially the proof

given by Jabara [7], Proposition 3.)

For the second part, suppose α Autc(G) is an element of order 2 in Aut(G)/Autc(G) so α2 ∈

Autc(G). For any x, y ∈ G, again using (iii) of the above lemma, we get α[x, y] = [α(x), α(y)] =

[α2(x), y] = [x + [x, α2], y] = [x, y] since [x, α2] ∈ Z(G). (Recall [x, α2] = −x + α2(x) and we

have shown above that α2 ∈ Autc(G).) Therefore [x, y] ∈ CG(α) =: {g ∈ G|α(g) = g}, i.e.,

[G, G] ≤ C(α). If e = expG/[G, G] then e[G, α] ≤ eG ≤ [G, G] ≤ CG(α) and so, for any x ∈ G,

e[x, α] = α(e[x, α]) = eα[x, α] = e(−[x, α] + [x, α2]) = −e([x, α]) + e[x, α2] since [x, α2] ∈ Z(G).

Therefore e(−2[x, α]+[x, α2]) = −2e[x, α]+e[x, α2] = 0. From Theorem 1 of [9], −2[x, α]+[x, α2] ∈

Z(G) which in turn gives −2[x, α] ∈ Z(G). Since G has odd order, [x, α] ∈ Z(G) which means

[G, α] ≤ Z(G), i.e., α ∈ Autc(G), a contradiction. Therefore Aut(G)/Autc(G) must be of odd

order.

Corollary III.4. If G is an E-group of odd order, then for every x ∈ G, CG(x) is a characteristic

subgroup of G.

Proof. For η ∈ End(G), x ∈ G, y ∈ CG(x), [x, η2(y)] = [η(x), η(y)] = η[x, y] = 0, hence η2(g) ∈

CG(x). This shows that CG(x) is invariant under η2 for each η ∈ End(G). Now let α ∈ Aut(G) and
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note that α2 leaves CG(x) invariant. From the above theorem, there exists an odd integer m, say

m = 2k +1, such that αm ∈ Autc(G). Now CG(x) is also invariant under αm. In fact, if y ∈ CG(x),

then αm(y) = y + [y, αm] ∈ CG(x) since [y, αm] ∈ Z(G). Therefore α = αm−2k = αm(α−k)2 leaves

CG(x) invariant, as required.

As mentioned above, I-groups are characterized as those groups G such that CG(x) E G, for

each x in G, and that no similar characterization of E-groups is known, [10], [16]. Using the

above results and results from Sections 3 and 4 of Caranti, [3], valid without the nilpotence class 2

hypothesis, we are now able to give this desired characterization.

Theorem III.5. Let G be a finite p-group, p > 2. Then G is an E-group if and only if, for each

x ∈ G, CG(x) is a fully invariant subgroup.

Proof. Clearly if CG(x) is fully invariant then for each x ∈ End(G), α(x) ∈ CG(x) so [x, α(x)] =

0. From Lemma III.1, G is an E-group. Conversely, let G = H1 ⊕ · · · ⊕ Hn where each Hi is

indecomposable and let x ∈ G, say x = h1 + · · · + hn, hi ∈ Hi. Then CG(x) =
n⋂

i=1
CG(hi) and

so it suffices to consider the case x = h1 ∈ H1. In this case CG(x) = CH1(x) ⊕ · · · ⊕ Hn. Any

automorphism of Hi can be extended to an endomorphism of G by defining it to be the zero map on

Hj , j 6= i and since, by the previous corollary, CH1(x) is characteristic in H1, we have that CG(x) is

invariant under all such endomorphisms of G. Also any η ∈ Hom(G, Z(G)) leaves CG(x) invariant.

Now from [3] Theorem 4.3, every endomorphism α of G has the form α = α1 + · · ·+ αn + η where

αi ∈ Aut(Hi) ∪ {0} and η ∈ Hom(G, Z(G)) and so, α(CG(x)) ⊆ CG(x) for each x ∈ G.

One would now conjecture that the “natural” characterization of A-groups would be “If G is a

finite p-group, p > 2 then G is an A-group if and only if for each x ∈ G, CG(x) is a characteristic

subgroup of G”.

The proof of Theorem III.5 uses a result of Malone, [9] which depends on the construction of

a certain endomorphism which need not be an automorphism and so cannot be used directly in a

characterization of A-groups. Thus a characterization remains open at this time. However we can

answer another query of Saad and Thomsen, [16].

Theorem III.6. For any prime p, there exists a finite p-group P of nilpotence class 2 and exponent

p2 such that Aut(P ) = Autc(P ) (and, in particular, P is an A-group) but P is not an E-group.

Proof. The construction, employing a graph to define a presentation, is similar to one first intro-

duced in [6] and subsequently adapted with modifications by several authors. The version used in
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[14] seems most convenient for our purposes.

Let Γ be the (undirected) graph shown below with vertex set V (Γ) = {v1, v2, . . . , v10} and edge

set E(Γ).
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Let F be the free group of rank 10 on V (Γ) and define an endomorphism θ of F by

θ(v1) = v3, θ(v2) = v4, θ(v5) = v7, θ(v6) = v8, θ(v9) = 0,

θ(v3) = v1, θ(v4) = v2, θ(v7) = v5, θ(v8) = v6, θ(v10) = 0.

Let π be the permutation (1 2) (3 4) (5 6) (7 8) (9 10) and for any prime p, let

Rp = {−pvi + [vi, vπ(i)], [vr, vs], [vi, vj , vk]| 1 ≤ i, j, k ≤ 10, {vr, vs} ∈ E(Γ)} ⊂ F.

Rp ∪ {0} is invariant under θ and so θ induces an endomorphism (which, by a harmless abuse of

notation, we also denote by θ) of the quotient group P = F/RF
p (where RF

p denotes the normal

closure of Rp in F ).

Let xi = vi + RF
p for 1 ≤ i ≤ 10. Then P = 〈x1, x2, . . . , x10〉 is a finite p-group of class 2 and

exponent p2 satisfying the additional relations

px1 = [x1, x2] = −px2, px3 = [x3, x4] = −px4, px5 = [x5, x6] = −px6,

px7 = [x7, x8] = −px8, px9 = [x9, x10] = −px10, [xr, xs] = 0 if {vr, vs} ∈ E(Γ).

Note that in Γ, all vertices have degree at least 2, there are no cycles of length less than 5 and

the automorphism group of Γ is trivial. Thus, Γ satisfies the conclusions of [14] Theorem 1 (with

G = 1). Also, the permutation of V (Γ) induced by π moves each vertex of Γ outside its closed

neighborhood (i.e. to a different and non-adjacent vertex). It follows by the argument of Theorem

2 of [14] that Aut(P ) = Autc(P ). In particular, P is an A-group since, if x ∈ P and α ∈ Aut(P ),
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then [α(x), x] = [x + z, x] = 1 (where z = [x, α] ∈ Z(P )). However, P is not an E-group since

[x2, θ(x2)] = [x2, x4] 6= 1.

We conclude this section with a result rather unrelated to the above, but motivated by the

recent activity on groups with special covers (e.g., [1], [2]). Recall that a cover C of a group G is

a collection {Hα} of proper subgroups of G such that G = ∪Hα. The subgroups Hα are called the

cells of the cover. In this result we do not require G to be a finite group.

Theorem III.7. A nonabelian group has a finite covering consisting of fully invariant abelian

subgroups if and only if G is central by finite and G is an E-group.

Proof. From a result of Baer, (see [13]), if G has a finite cover of abelian subgroups, then G is

central by finite. Now let C = {Cα} be a cover by fully invariant subgroups and define R(C) :=

{f ∈ M0(G)|f |Cα ∈ End(Cα)}. Since the Cα are abelian, computations show that R(C) is a ring

contained in M0(G). Since the Cα are fully invariant, End(G) ⊆ R(C), so E(G) ⊆ R(C) and thus

E(G) is a ring, i.e. G is an E-group.

Conversely, if G is an E-group, E(G)x = {σ(x)|σ ∈ E(G)} is a fully invariant abelian subgroup,

for each x ∈ G. We note that the proof of ii) ⇒ (iii) in Lemma III.1 does not require G to be

finite so we also have, from Corollary III.2 that Z(G) is a fully invariant subgroup of G. Hence

Fx := (E(G)x) + Z(G) is a fully invariant abelian subgroup for each x ∈ G. Since G is nonabelian,

each Fx is a proper subgroup. Now, following [2], since G is central by finite, we let T := {x1, . . . , xn}

be a transversal of Z(G) in G. Then G =
n⋃

i=1
((E(G)xi) + Z(G)) since each y ∈ G can be written

as some xi + w, w ∈ Z(G) and some xi ∈ T . Consequently G has a finite cover by fully invariant

abelian subgroups.

IV E(G)E(G)E(G) MAXIMAL AS A RING IN M0(G)M0(G)M0(G)

We now turn to the question (Q2) of the introduction, that is, if G is an E-group, when is E(G)

maximal as a ring in M0(G)? We are able only to give a partial answer to this question.

Definition IV.1. A cover C = {Hi}n
i=1 by subgroups Hi is bad if for all i, 〈Hi ∩Hj |i 6= j〉 = Hi.

Otherwise the cover is good.

Theorem IV.2. Let G be a finite nonabelian pE-group, p > 2, of nilpotence class 2. If E(G) is

maximal as a ring in M0(G), then every cover of G by fully invariant subgroups is bad.
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Proof. Let G satisfy the hypotheses and let G∗ denote the abelian group with the same underlying

set as G but with group operation ∗ defined by x ∗ y = x + y + [y, x]1/2 = x
1
2 + y + x

1
2 . (This is

well-defined since G has odd order so the map G → G, x 7→ x2 is a bijection.) Note that every

subgroup of G is a subgroup of G∗ and every endomorphism of G is an endomorphism of G∗, so

End(G) ⊆ End(G∗) (as sets).

Because G is an E-group, if x ∈ G and e1, e2 ∈ E(G) then [e1(x), e2(x)] = 1 and so e1(x)∗e2(x) =

e1(x) + e2(x). Therefore, addition is defined unambiguously in E(G), whether we regard it as a

subset of M0(G) or as a subset of M0(G∗). Since G∗ is abelian, it follows that E(G) is a subring of

End(G∗).

Suppose that {Hi : 1 ≤ i ≤ n} is a good fully invariant covering of G and assume that

K1 = 〈H1∩Hj : j 6= 1〉 � H1. For each i, let Zi = Hi∩Z(G). Then Zi is a non-trivial subgroup of

Z(Hi) that is fully invariant in G by III.2. If S is the set of all maps g ∈ M0(G) whose restriction to

each Hi is in Hom(Hi, Zi), S is a ring and e+s = s+e for all e ∈ E(G). In fact, if R = E(G)+S, R

is a ring and S is an ideal in R.

Let η ∈ Hom(H1/K1, Z1). Because H1 ∩Hj ≤ K1 for all j 6= 1, we may construct a map f on

G by defining f(x) = η(x + K1) if x ∈ H1 and f(x) = 1 if x /∈ H1. Then the maximality of E(G)

implies that f ∈ E(G), hence, f ∈ End(G∗).

Because G∗ = H1∪〈Hj : j 6= 1〉 and because no group can be the union of two proper subgroups,

G∗ = 〈Hj : j 6= 1〉. Since f(x) = 1 for all x /∈ H1, it follows that f(x) = 1 for all x ∈ G∗ and, in

particular, η(x) = 1 for all x ∈ H1. This proves that Hom(H1/K1, Z(H1)) = 0 and so H1 = K1, a

contradiction.

This proves that all coverings of G by proper fully invariant subgroups are bad.

We now indicate an application of this theorem.

Suppose End(G) = Aut(G)∪Hom(G, Z(G)). If α ∈ Aut(G) and η ∈ Hom(G, Z(G)), then α+η ∈

End(G)\Hom(G, Z(G)), so α+η ∈ Aut(G). In particular, id+η ∈ Aut(G) for all η ∈ Hom(G, Z(G))

and so η(x) = −x + (id + η)(x) = [x, id + η] ∈ [G, Aut(G)] for all x ∈ G. Also, for α, β ∈ Aut(G)

and x ∈ G, β[x, α] = β(−x + α(x)) = −β(x) + βα(x) = −β(x) + x − x + α(x) − α(x) + βα(x) =

−(−x + β(x)) + (−x + α(x)) + (−α(x) + β(α(x))) ∈ [G, Aut(G)]. Therefore [G, Aut(G)] is a

fully invariant subgroup of G containing [G, Inn(G)] = [G, G]. Moreover, each cyclic subgroup of

G/[G, Aut(G)] is invariant under End(G). This follows from the observation that, if x ∈ G, then

for η ∈ Hom(G, Z(G)), η(x) ∈ [G, Aut(G)] while if α ∈ Aut(G), then α(x) = x− x + α(x).
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Corollary IV.3. Let G be a finite nonabelian pE-group, p > 2, of nilpotency class 2 such that

End(G) = Aut(G)∪Hom(G, Z(G)). If G/[G, Aut(G)] is not cyclic then E(G) is not maximal as a

ring in M0(G).

Proof. Let G := G/[G, Aut(G)]. Since this abelian group G is non-cyclic, so is

G/pG = G/[G, Aut(G)]/p(G/[G, Aut(G)]) ∼= G/([G, Aut(G)] + pG).

Each cyclic subgroup of G/([G, Aut(G)] + pG) is invariant under End(G) and so, by lifting each

such subgroup to a subgroup of G we obtain a cover of G by proper fully invariant subgroups. Since

the intersection of any two distinct cells of the cover is contained in ([G, Aut(G)] + pG), a proper

subgroup of each cell, the cover is good, and the result follows from the previous theorem.

The early nonabelian examples of E-groups were pE-groups, p > 2, having (among others) the

following two properties:

(∗) End(G) = Aut(G) ∪Hom(G, Z(G)), and

(∗∗) Aut(G) = Autc(G).

On the other hand if G is a finite nonabelian p-group satisfying (∗) and (∗∗), then G is an E-group.

Moreover (∗∗) implies that every inner automorphism is central so G is of nilpotency class 2.

Corollary IV.4. If G is a finite nonabelian p-group, p > 2 satisfying (∗) and (∗∗) above then

E(G) is not maximal as a ring in M0(G).

Proof. By hypothesis, [G, Aut(G)] ≤ Z(G). If G/[G, Aut(G)] is cyclic, then so is

(G/[G, Aut(G)])/(Z(G)/[G, Aut(G)]) ∼= G/Z(G)

which contradicts the fact that G is nonabelian. Thus G/[G, Aut(G)] is not cyclic and the result

now follows from the previous corollary.

In particular, we mention that the examples of Faudree, [5], and those examples in Section 2 of

Caranti, [3], satisfy (∗) and (∗∗). It should be mentioned that, in [3], Caranti also gives examples

of pE-groups not satisfying (∗∗). In this paper he also shows that if an E-group G is not the direct

sum of two nonabelian groups then (∗) is satisfied.

We remark that the authors have no example of a nonabelian E-group, G, for which E(G) is a

maximal ring in M0(G). This leads to the question, for a finite E-group G, if E(G) is a maximal

ring in M0(G) must G be abelian?
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