On automorphisms of A-groups

Martin R. Pettet

Abstract

Let G be an A-group (i.e. a group in which $x x^{\alpha}=x^{\alpha} x$ for all $x \in G, \alpha \in \operatorname{Aut}(G))$ and let $A_{\mathcal{C}}(G)$ denote the subgroup of $\operatorname{Aut}(G)$ consisting of all automorphisms that leave invariant the centralizer of each element of G. The quotient $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)$ is an elementary abelian 2-group and natural analogies exist to suggest that it might always be trivial. It is shown that, in fact, for any odd prime p and any positive integer r, there exist infinitely many finite $p A$-groups G for which $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)$ has rank r.

Mathematics Subject Classification (2000). Primary 20D45; Secondary 20D15, 16Y30.

Keywords. A-group, graph, automorphism

1. Introduction. For an (additively written) group G, let $M_{0}(G)$ be the near-ring of all identity-preserving maps from G to itself (under pointwise addition and composition) and let S be a semigroup (under composition) of endomorphisms of G. A problem that has attracted some interest among near-ring theorists is to characterize those G for which the subnear-ring of $M_{0}(G)$ generated by S is actually a ring. This is the case precisely when x^{η} commutes with x for all $x \in G$, $\eta \in S$ and so, despite its near-ring theoretic motivation, the question is essentially a group theoretic one.

If this commuting hypothesis holds for $S=\operatorname{Inn}(G)$, the group of inner automorphisms of G, then G is a 2-Engel group. As follows from [4, 12.3.6], such groups are precisely those in which the centralizer of every element is invariant under S (i.e. normal in G). If it holds for $S=\operatorname{End}(G)$, the semigroup of all endomorphisms of G, G is said to be an E-group. Recently, it was shown [3, Theorem III.5] that finite E-groups are, again, precisely those in which each centralizer is invariant under S (i.e. fully invariant in G). In view of these facts, the question was posed in [3] whether finite groups satisfying the commuting hypothesis with $S=\operatorname{Aut}(G)$
(i.e. A-groups) are precisely those in which all centralizers are characteristic. The purpose of this note is to provide a negative answer to this question.

Let $A_{\mathcal{C}}(G)$ denote the subgroup of $\operatorname{Aut}(G)$ consisting of those automorphisms of G that leave invariant the centralizer $C_{G}(x)$ of each element x of G. If $\operatorname{Aut}_{c}(G)$ denotes the group $C_{\operatorname{Aut}(G)}(G / Z(G))$ of central automorphisms of G, then

$$
\operatorname{Aut}_{c}(G) \leq A_{\mathcal{C}}(G)=\bigcap_{x \in G} N_{\operatorname{Aut}(G)}\left(C_{G}(x)\right) \unlhd \operatorname{Aut}(G)
$$

For G to be an A-group, it is clearly sufficient that $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)=1$. The question alluded to in the preceding paragraph is whether this condition is necessary.

If G is an A-group and $\alpha \in \operatorname{Aut}(G)$, the equations $\left[x, x^{\alpha}\right]=\left[y, y^{\alpha}\right]=1=[x y$, $\left.(x y)^{\alpha}\right]$ yield that $\left[x^{\alpha}, y\right]=\left[x, y^{\alpha}\right]$ for all $x, y \in G$. (See, for example, [1, Lemma 2.1] or [3, Lemma III.1].) It follows that if $y \in C_{G}(x)$ then $\left[x, y^{\alpha^{2}}\right]=\left[x^{\alpha}, y^{\alpha}\right]=$ $[x, y]^{\alpha}=1$ and so $y^{\alpha^{2}} \in C_{G}(x)$. Therefore, $\alpha^{2} \in A_{\mathcal{C}}(G)$ for all $\alpha \in \operatorname{Aut}(G)$ and so the quotient $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)$ is an elementary abelian 2-group. (See also [1, Lemma 2.4].) This represents the limit of what can be said in general about this quotient for, not only can $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)$ be non-trivial, it can be of arbitrary rank.
Theorem 1.1. Let r be a positive integer and p be an odd prime. Then there exist infinitely many finite p-groups G such that G is an A-group, $A_{\mathcal{C}}(G)=\operatorname{Aut}_{c}(G)$ and the elementary abelian 2-group $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)$ has rank r.

As mentioned above, if G is an E-group, all centralizers are fully invariant and so $\operatorname{Aut}(G) / A_{\mathcal{C}}(G)=1$. Thus, the theorem provides infinitely many examples of A-groups that are not E-groups, extending [3, Theorem III.6]. As in the earlier result, the argument is a variation of the graph theoretic approach developed by Heineken and Liebeck [2] and hinges on a determination of the centralizers in a p-group $G_{\hat{\Gamma}}$ whose presentation is encoded by a graph $\hat{\Gamma}$ (Proposition 3.2). In certain circumstances, $G_{\hat{\Gamma}}$ is an A-group with $\left|\operatorname{Aut}\left(G_{\hat{\Gamma}}\right) / A_{\mathcal{C}}\left(G_{\hat{\Gamma}}\right)\right|=2$ and direct products of such groups furnish the examples that establish the theorem.

Except as motivation, near-ring theory plays no role in this note and so we shall write all groups multiplicatively.
2. The prismoidal extension of a graph. Let Γ be a finite (undirected) graph with vertex set $V \Gamma$ and edge set $E \Gamma$. By the prismoidal extension $\hat{\Gamma}$ of Γ, we shall mean the graph obtained by taking an isomorphic copy Γ^{α} of Γ (with graph isomorphism $\alpha: \Gamma \rightarrow \Gamma^{\alpha}$) and setting $V \hat{\Gamma}=V \Gamma \cup V \Gamma^{\alpha}$ and $E \hat{\Gamma}=E \Gamma \cup E \Gamma^{\alpha} \cup E^{*}$, where $E^{*}=$ $\left\{\left\{x, x^{\alpha}\right\}: x \in V \Gamma\right\}$. (Alternatively, $\hat{\Gamma}$ may be described as the graph Cartesian product of Γ with the Cayley graph of a cyclic group of order 2.)

We shall refer to the involutary automorphism of $\hat{\Gamma}$ induced by α (also denoted by α) as the prismoidal automorphism. Extending the action of $\operatorname{Aut}(\Gamma)$ to $\hat{\Gamma}$ by defining $\left(x^{\alpha}\right)^{\gamma}=x^{\gamma \alpha}$ for all $x \in V \Gamma$ and $\gamma \in \operatorname{Aut}(\Gamma)$ allows the direct product $\operatorname{Aut}(\Gamma) \times\langle\alpha\rangle$ to be identified as a subgroup of $\operatorname{Aut}(\hat{\Gamma})$.

If $x \in V \Gamma$, denote by $N_{\Gamma}[x]$ (the neighborhood of x) the subset of $V \Gamma$ consisting of x and all vertices adjacent to it (i.e. $N_{\Gamma}[x]=\{x\} \cup\{y \in V \Gamma:\{x, y\} \in E \Gamma\}$). Recall that the girth of Γ is the length of the shortest irreducible cycle in Γ.
Proposition 2.1. Let Γ be a connected graph of girth at least 5 in which every vertex has valence at least 2. Then $\operatorname{Aut}(\hat{\Gamma})=\operatorname{Aut}(\Gamma) \times\langle\alpha\rangle$.

Proof. Note that under the hypotheses, $\hat{\Gamma}$ is connected with girth 4 , any quadrilateral (ie. cycle of length 4) in $\hat{\Gamma}$ has one pair of opposite edges in E^{*}, and no two edges in E^{*} share a common vertex.

Let $\beta \in \operatorname{Aut}(\hat{\Gamma})$ and let $x \in V \Gamma$. Let y and z be distinct vertices in $N_{\Gamma}[x] \backslash\{x\}$. Then the six vertices $\left\{y, x, z, z^{\alpha}, x^{\alpha}, y^{\alpha}\right\}$ define two quadrilaterals with a unique common edge $\left\{x, x^{\alpha}\right\} \in E^{*}$ and of course, the six images of these vertices under β form a similar configuration. In the quadrilateral $\left\{y^{\beta}, x^{\beta}, x^{\alpha \beta}, y^{\alpha \beta}\right\}$, the pair of opposite edges $\left\{x^{\beta}, y^{\beta}\right\}$ and $\left\{x^{\alpha \beta}, y^{\alpha \beta}\right\}$ cannot lie in E^{*} for if so, neither of the edges $\left\{x^{\beta}, z^{\beta}\right\}$ nor $\left\{x^{\beta}, x^{\alpha \beta}\right\}$ could (by virtue of sharing the vertex x^{β} with $\left.\left\{x^{\beta}, y^{\beta}\right\}\right)$ lie in E^{*} and so the quadrilateral $\left\{x^{\beta}, z^{\beta}, z^{\alpha \beta}, x^{\alpha \beta}\right\}$ would have no edges in E^{*}. It follows that the edge $\left\{x, x^{\alpha}\right\}^{\beta}=\left\{x^{\beta}, x^{\alpha \beta}\right\}$ lies in E^{*} and so $x^{\alpha \beta}=x^{\beta \alpha}$. Since x and β were arbitrary, this proves that E^{*} is invariant under $\operatorname{Aut}(\hat{\Gamma})$ and $\alpha \in Z(\operatorname{Aut}(\hat{\Gamma}))$.

Because Γ is connected and E^{*} is invariant under $\operatorname{Aut}(\hat{\Gamma})$, it follows that each element of $\operatorname{Aut}(\hat{\Gamma})$ either leaves the subgraphs Γ and Γ^{α} invariant or it interchanges them. Therefore, $|\operatorname{Aut}(\hat{\Gamma}): \operatorname{Aut}(\Gamma)|=2$ and so $\operatorname{Aut}(\hat{\Gamma})=\operatorname{Aut}(\Gamma) \times\langle\alpha\rangle$.
3. Groups defined by prismoidal extensions. We continue to assume in this section that Γ is a finite graph of girth at least 5 having no vertices of valence less than 2 (although connectedness is no longer needed). Let $V \Gamma=\left\{x_{i}: 1 \leq i \leq v\right\}$ and let $\hat{\Gamma}$ and α be, respectively, the prismoidal extension of Γ and the prismoidal automorphism, as defined in Section 2. The symbols $i^{\alpha}, 1 \leq i \leq v$, will be used as subscripts for the vertices of Γ^{α} so that $x_{i^{\alpha}}=x_{i}^{\alpha}$ and $x_{i^{\alpha}}^{\alpha}=x_{i}$. However, when there is no chance of ambiguity, we will occasionally use x_{i} (with the range of i unspecified) to denote any vertex of $\hat{\Gamma}$.

Let $F=F(V \hat{\Gamma})$ be the free group on $V \hat{\Gamma}$ so α induces an automorphism of order 2 (still to be denoted by α) of F. For each $x_{i} \in V \Gamma$, let ω_{i} be an element of F^{\prime} (to be defined more explicitly later) and let $\omega_{i^{\alpha}}=\omega_{i}^{\alpha}$.

For an odd prime p and a particular choice of the ω_{i} 's, define the group $G_{\hat{\Gamma}}=$ $\langle V \hat{\Gamma}: R\rangle=F / R^{F}$ where $R \subseteq F$ consists of the following relators:

$$
\left\{\begin{array}{l}
\text { (i) }\left[\left[x_{i}, x_{j}\right], x_{k}\right] \text { for all } x_{i}, x_{j}, x_{k} \in V \hat{\Gamma} \tag{3.1}\\
\text { (ii) } \omega_{i}^{-1} x_{i}^{p} \text { and } \omega_{i^{\alpha}}^{-1} x_{i^{\alpha}}^{p} \text { for } 1 \leq i \leq v \\
\text { (iii) }\left[x_{i}, x_{j}\right] \text { and }\left[x_{i^{\alpha}}, x_{j^{\alpha}}\right] \text { if } 1 \leq i<j \leq v \text { and }\left\{x_{i}, x_{j}\right\} \in E \Gamma \\
\text { (iv) }\left[x_{i}, x_{j}\right]^{-1}\left[x_{i^{\alpha}}, x_{j^{\alpha}}\right] \text { and }\left[x_{i}, x_{j^{\alpha}}\right]^{-1}\left[x_{i^{\alpha}}, x_{j}\right] \text { for } 1 \leq i<j \leq v
\end{array}\right.
$$

Let $G=G_{\hat{\Gamma}}$. We may identify $V \hat{\Gamma}$ with the set of generators $\left\{x_{i} R^{F}: x_{i} \in V \hat{\Gamma}\right\}$ of G, and in fact, when it is clear that we are referring to elements of G, we shall denote the generator $x_{i} R^{F}$ by x_{i} and $\omega_{i} R^{F}$ by ω_{i}.

By (i) and (ii) of (3.1), $G^{p} \leq G^{\prime} \leq Z(G)$ and so both the power map $x \mapsto x^{p}$ and (for fixed $g \in G$) the maps $x \mapsto[x, g]$ and $x \mapsto[g, x]$ are endomorphisms of G. Both G^{\prime} and G / G^{\prime} are elementary abelian p-groups and so, may be regarded as (multiplicatively-written) vector spaces over the finite field $G F(p)$.

Let $H_{\Gamma}=\left\langle x_{i}: x_{i} \in V \Gamma\right\rangle$ (so $G=\left\langle H_{\Gamma},\left(H_{\Gamma}\right)^{\alpha}\right\rangle$ and $H_{\Gamma} \cap\left(H_{\Gamma}\right)^{\alpha}=1$). Let $B_{\Gamma}=\left\{\left[x_{i}, x_{j}\right]: 1 \leq i<j \leq v,\left\{x_{i}, x_{j}\right\} \notin E \Gamma\right\}$ and $B_{0}=\left\{\left[x_{i}, x_{j^{\alpha}}\right]: 1 \leq i<j \leq v\right\}$ so B_{Γ} is a basis for H_{Γ}^{\prime} and $B_{\Gamma} \cup B_{0}$ is a basis for $G_{\hat{\Gamma}}^{\prime}=G^{\prime}$. Because $R \cup R^{-1}$ is α-invariant, α induces an automorphism of order 2 (again denoted by α) of G with $G^{\prime} \leq C_{G}(\alpha)$ (by (3.1(iv)). Also, $\left[x, y^{\alpha}\right]=\left[x, y^{\alpha}\right]^{\alpha}=\left[x^{\alpha}, y^{\alpha^{2}}\right]=\left[x^{\alpha}, y\right]$ for all $x, y \in G$ and so $\left[x, x^{\alpha}\right]=\left[x^{\alpha}, x\right]=\left[x, x^{\alpha}\right]^{-1}$. Since $p>2,\left[x, x^{\alpha}\right]=1$ for all $x \in G$.
Definition 3.1. If $x \in G=G_{\hat{\Gamma}}$ and $x \equiv \prod_{i=1}^{v} x_{i}^{e_{i}} \prod_{i=1}^{v} x_{i^{\alpha}}^{e_{i} \alpha} \bmod G^{\prime}$ where $e_{i}, e_{i^{\alpha}} \in$ $G F(p)$, then $\operatorname{supp}(x)$ (the support of x) denotes the set

$$
\left\{x_{i} \in V \Gamma: e_{i} \neq 0\right\} \cup\left\{x_{i^{\alpha}} \in V \Gamma^{\alpha}: e_{i^{\alpha}} \neq 0\right\} .
$$

The key to Theorem 1.1 is the following technical proposition that severely restricts the possibilities for the order of the centralizer of an element of $G_{\hat{\Gamma}}$:

Proposition 3.2. Assume that Γ is a graph of girth at least 5 such that every vertex of Γ has valence at least 2. Let $V \Gamma=\left\{x_{i}: 1 \leq i \leq v\right\}$ and for $1 \leq i \leq v$, let δ_{i} be the valence of x_{i} in Γ. Let $G=G_{\hat{\Gamma}}$ and $\bar{G}=G / G^{\prime}$ and suppose that $\overline{1} \neq \bar{a} \in \bar{G}$.
(a) If $\bar{a} \in[\bar{G}, \alpha] \cup C_{\bar{G}}(\alpha)$ then $\left|C_{G}(a): G^{\prime}\right|=p^{v+1}$.
(b) If $\bar{a} \notin[\bar{G}, \alpha] \cup C_{\bar{G}}(\alpha)$ then $\left|C_{G}(a): G^{\prime}\right| \leq p^{3}$ unless $\bar{a} \in\left\langle\bar{x}_{i}, \bar{x}_{i}^{\alpha}\right\rangle$ for some $x_{i} \in V \Gamma$, in which case $\left|C_{G}(a): G^{\prime}\right|=p^{\delta_{i}+2}$.
(c) $3<\delta_{i}+2<v+1$ for all $i, 1 \leq i \leq v$.

Proof. Let $\overline{1} \neq \bar{a} \in \bar{G}$ so $a \equiv u_{a} v_{a} \not \equiv 1 \bmod G^{\prime}$, where $u_{a}=\prod_{k=1}^{v} x_{k}^{a_{k}} \in H_{\Gamma}$ and $v_{a}=\prod_{k=1}^{v} x_{k^{\alpha}}^{a_{k} \alpha} \in H_{\Gamma}^{\alpha}$ with $a_{k}, a_{k^{\alpha}} \in G F(p)$ for $1 \leq k \leq v$. Replacing a by a^{α} if necessary, we may assume that $u_{a} \not \equiv 1 \bmod G^{\prime}($ i.e. $\operatorname{supp}(a) \cap V \Gamma \neq \emptyset)$.

Let $z \in C_{G}(a)$ so $z \equiv u_{z} v_{z} \bmod G^{\prime}$, where $u_{z}=\prod_{k=1}^{v} x_{k}^{z_{k}} \in H_{\Gamma}$ and $v_{z}=$ $\prod_{k=1}^{v} x_{k^{\alpha}}^{z_{k} \alpha} \in H_{\Gamma}^{\alpha}$ with $z_{k}, z_{k^{\alpha}} \in G F(p)$ for $1 \leq k \leq v$.

For any $x_{i}, x_{j} \in V \hat{\Gamma},\left[x_{i}, x_{j}\right]=\left[x_{i^{\alpha}}, x_{j^{\alpha}}\right]=\left[x_{j}, x_{i}\right]^{-1}=\left[x_{j^{\alpha}}, x_{i^{\alpha}}\right]^{-1}$ and if $\left\{x_{i} \cdot x_{j}\right\} \notin E \hat{\Gamma}$ (i.e. $\left[x_{i}, x_{j}\right] \neq 1$), then one of these four elements lies in the basis $B_{\Gamma} \cup B_{0}$ of G^{\prime}. Because $1=[a, z]=\prod_{x_{i}, x_{j} \in V \hat{\Gamma}}\left[x_{i}, x_{j}\right]^{a_{i} z_{j}}$, expressing this product in terms of $B_{\Gamma} \cup B_{0}$ yields that if $\left\{x_{i}, x_{j}\right\} \notin E \hat{\Gamma}$, then $a_{i} z_{j}+a_{i^{\alpha}} z_{j^{\alpha}}-a_{j} z_{i}-a_{j^{\alpha}} z_{i^{\alpha}}=0$. This equation holds vacuously if $\left\{x_{i}, x_{j}\right\} \in E^{*}$ (i.e. if $j=i^{\alpha}$) and so

$$
\begin{equation*}
a_{i} z_{j}+a_{i^{\alpha}} z_{j^{\alpha}}=a_{j} z_{i}+a_{j^{\alpha}} z_{i^{\alpha}} \text { if }\left\{x_{i}, x_{j}\right\} \notin E \Gamma \cup E \Gamma^{\alpha} . \tag{3.2}
\end{equation*}
$$

Case 1: $\bar{a} \notin\left\langle\bar{u}_{a}, \bar{u}_{a}^{\alpha}\right\rangle$
Let $x_{i} \in \operatorname{supp}(a) \cap V \Gamma\left(\right.$ so $\left.a_{i} \neq 0\right)$ and let $m=a_{i^{\alpha}} / a_{i}$. Then $a_{j^{\alpha}} / a_{j} \neq m$ for some j such that $1 \leq j \leq v$ (for otherwise, $\bar{a}=\bar{u}_{a} \bar{u}_{a}^{m \alpha} \in\left\langle\overline{u_{a}}, \overline{u_{a}}{ }^{\alpha}\right\rangle$) and so, if $d_{i, j}=\operatorname{det}\left(\begin{array}{cc}a_{i} & a_{i^{\alpha}} \\ a_{j} & a_{j^{\alpha}}\end{array}\right)$, then $d_{i, j} \neq 0$.

If $1 \leq k \leq v$ then certainly none of the pairs $\left\{x_{i}, x_{k^{\alpha}}\right\},\left\{x_{j}, x_{k^{\alpha}}\right\}$ or $\left\{x_{i}, x_{j^{\alpha}}\right\}$ lies in $E \Gamma \cup E \Gamma^{\alpha}$ and so by (3.2),
(a) $a_{i} z_{k^{\alpha}}+a_{i^{\alpha}} z_{k}=a_{k^{\alpha}} z_{i}+a_{k} z_{i^{\alpha}}$
(b) $a_{j} z_{k^{\alpha}}+a_{j^{\alpha}} z_{k}=a_{k^{\alpha}} z_{j}+a_{k} z_{j^{\alpha}}$ and
(c) $a_{i} z_{j^{\alpha}}+a_{i^{\alpha}} z_{j}=a_{j^{\alpha}} z_{i}+a_{j} z_{i^{\alpha}}$.

From (a) and (b), $\left(\begin{array}{cc}a_{i} & a_{i^{\alpha}} \\ a_{j} & a_{j^{\alpha}}\end{array}\right)\binom{z_{k^{\alpha}}}{z_{k}}=\left(\begin{array}{cc}z_{i} & z_{i^{\alpha}} \\ z_{j} & z_{j^{\alpha}}\end{array}\right)\binom{a_{k^{\alpha}}}{a_{k}}$ and so

$$
\binom{z_{k^{\alpha}}}{z_{k}}=\left(\begin{array}{cc}
a_{i} & a_{i^{\alpha}} \\
a_{j} & a_{j^{\alpha}}
\end{array}\right)^{-1}\left(\begin{array}{cc}
z_{i} & z_{i^{\alpha}} \\
z_{j} & z_{j^{\alpha}}
\end{array}\right)\binom{a_{k^{\alpha}}}{a_{k}}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{a_{k^{\alpha}}}{a_{k}},
$$

where $A=\left(1 / d_{i, j}\right)\left(a_{j^{\alpha}} z_{i}-a_{i^{\alpha}} z_{j}\right)$ and $D=\left(1 / d_{i, j}\right)\left(-a_{j} z_{i^{\alpha}}+a_{i} z_{j^{\alpha}}\right)$ But by (c), $A=D$ and so $z_{k^{\alpha}}=A a_{k^{\alpha}}+B a_{k}$ and $z_{k}=C a_{k^{\alpha}}+A a_{k}$. Thus, if $1 \leq k \leq v$, then $x_{k}^{z_{k}}=x_{k}^{C a_{k^{\alpha}}+A a_{k}} \equiv\left(x_{k}^{a_{k}}\right)^{A}\left(x_{k^{\alpha}}^{a_{k^{\alpha}}}\right)^{\alpha C} \bmod G^{\prime}$ and $x_{k^{\alpha}}^{z_{k^{\alpha}}}=x_{k^{\alpha}}^{A a_{k} \alpha}+B \overline{a_{k}} \equiv$ $\left(x_{k}^{a_{k}}\right)^{\alpha B}\left(x_{k^{\alpha}}^{a_{k} \alpha}\right)^{A} \bmod G^{\prime}$. Therefore, $z \equiv u_{a}^{A} v_{a}^{\alpha C} u_{a}^{\alpha B} v_{a}^{A} \equiv a^{A} u_{a}^{\alpha B} v_{a}^{\alpha C} \bmod G^{\prime}$ and so $z \in\left\langle a, u_{a}^{\alpha}, v_{a}^{\alpha}\right\rangle G^{\prime}$. Since z was chosen arbitrarily in $C_{G}(a)$, it follows that $C_{G}(a) \leq\left\langle a, u_{a}^{\alpha}, v_{a}^{\alpha}\right\rangle G^{\prime}$ and so $\left|C_{G}(a): G^{\prime}\right| \leq p^{3}$. (Indeed, if $\left\{x_{i}, x_{j}\right\} \notin E \Gamma \cup E \Gamma^{\alpha}$, then additionally, $B=C$ and so $C_{G}(a) \leq\left\langle a, a^{\alpha}\right\rangle G^{\prime}$ and $\left|C_{G}(a): G^{\prime}\right| \leq p^{2}$.)

Case 2: $\bar{a} \in\left\langle\bar{u}_{a}, \bar{u}_{a}^{\alpha}\right\rangle$
In this case, $\bar{a}=\bar{u}_{a}^{l} \bar{u}_{a}^{m \alpha}$ for some $l, m \in G F(p)$. Because we assumed that $\operatorname{supp}(a) \cap V \Gamma \neq \emptyset, l \neq 0$ and so if $r=l^{-1} \in G F(p), \bar{a}^{r}=\bar{u}_{a} \bar{u}_{a}^{m r \alpha}$. Since $\left|C_{G}(a)\right|=$ $\left|C_{G}\left(a^{r}\right)\right|$, we may assume that $l=1$, whence $\bar{a}=\bar{u}_{a}{\overline{u_{a}}}^{m \alpha}$.

Before proceeding with this case, we note the following:
Lemma 3.3. Let $u, z \in G$.
(a) $\left[u u^{m \alpha}, z\right]=\left[u, z z^{m \alpha}\right]$ and in particular, $z \in C_{G}\left(u u^{m \alpha}\right)$ if and only if $z z^{m \alpha} \in C_{G}(u)$.
(b) $\left[z^{-1} z^{m \alpha}, u u^{m \alpha}\right]=[z, u]^{m^{2}-1}$ and in particular, if $m \neq \pm 1$ then $z \in C_{G}(u)$ if and only if $z^{-1} z^{m \alpha} \in C_{G}\left(u u^{m \alpha}\right)$.
(c) If $m \neq \pm 1$, the maps $C_{G}\left(u u^{m \alpha}\right) \rightarrow C_{G}(u)$ and $C_{G}(u) \rightarrow C_{G}\left(u u^{m \alpha}\right)$ defined by $x \mapsto x x^{m \alpha}$ and $x \mapsto x^{-1} x^{m \alpha}$, respectively, are each bijective and so $\left|C_{G}\left(u u^{m \alpha}\right)\right|=\left|C_{G}(u)\right|$.

Proof. Using the fact that for any $g \in G$, the maps $x \mapsto[x, g]$ and $x \mapsto[g, x]$ are endomorphisms, statement (a) follows from the computation

$$
\left[u u^{m \alpha}, z\right]=[u, z]\left[u^{\alpha}, z\right]^{m}=[u, z]\left[u, z^{\alpha}\right]^{m}=\left[u, z z^{m \alpha}\right]
$$

and (b) follows from

$$
\left[z^{-1} z^{m \alpha}, u u^{m \alpha}\right]=[z, u]^{-1}\left[z, u^{\alpha}\right]^{-m}\left[z^{\alpha}, u\right]^{m}\left[z^{\alpha}, u^{\alpha}\right]^{m^{2}}=[z, u]^{m^{2}-1}
$$

Because $x x^{\alpha}=x^{\alpha} x$ for all $x \in G$, the set $\{a+b \alpha: a, b \in G F(p)\} \subseteq M_{0}(G)$ is a ring in which $(1+m \alpha)(1-m \alpha)=1-m^{2}=(1-m \alpha)(1+m \alpha)$. Since $1-m^{2} \neq 0$, the power map $x \mapsto x^{1-m^{2}}$ is bijective and so the maps $1-m \alpha$ and $1+m \alpha$ are also bijective. This proves (c).

Observe that by statement (c) of the lemma, if $m \neq \pm 1$ then $\left|C_{G}(a)\right|=$ $\left|C_{G}\left(u_{a} u_{a}^{m \alpha}\right)\right|=\left|C_{G}\left(u_{a}\right)\right|$ and so in this case, we may assume that $a=u_{a}$ (i.e. $m=0$ and $\emptyset \neq \operatorname{supp}(a) \subseteq V \Gamma$). Thus, Case 2 splits into two subcases.

Case 2a: $m=0$

In this case, if $1 \leq i, j \leq v$ then, because $a_{i^{\alpha}}=0=a_{j^{\alpha}}$ and $\left\{x_{i}, x_{j^{\alpha}}\right\} \notin E \Gamma \cup$ $E \Gamma^{\alpha},(3.2)$ yields that $a_{i} z_{j^{\alpha}}=a_{j} z_{i^{\alpha}}$. Moreover, if $\left\{x_{i}, x_{j}\right\} \notin E \Gamma$ then $a_{i} z_{j}=a_{j} z_{i}$.

Let $x_{i} \in \operatorname{supp}(a)$. Then if $s=z_{i^{\alpha}} / a_{i} \in G F(p), z_{j^{\alpha}}=s a_{j}$ for all $j, 1 \leq$ $j \leq v$, whence, $v_{z}=\prod_{i=1}^{v} x_{i^{\alpha}}^{s a_{i}} \equiv\left(u_{a}^{\alpha}\right)^{s} \equiv\left(a^{\alpha}\right)^{s} \bmod G^{\prime}$. Next we consider the possibilities for u_{z}.

Suppose first that $|\operatorname{supp}(a)| \geq 2$ and let $V_{a}=\left\langle\bigcap_{x_{j} \in \operatorname{supp}(a)} N_{\Gamma}\left[x_{j}\right]\right\rangle$ (so $V_{a} \subseteq$ $\left.C_{G}(a)\right)$. Because $|\operatorname{supp}(a)| \geq 2$, the non-existence of quadrilaterals in Γ implies that $\left|V_{a}\right| \leq p$. We claim now that there is a constant r such that for every $x_{k} \in \operatorname{supp}(z)$, either $z_{k}=r a_{k}$ or $x_{k} \in V_{a}$. It will follow then that $u_{z} \in a^{r} V_{a}$.

Note that if $x_{k} \in \operatorname{supp}(z) \backslash \operatorname{supp}(a)$ (so $a_{k}=0$) then $x_{k} \in V_{a}$, for otherwise $\left\{x_{j}, x_{k}\right\} \notin E \Gamma$ for some $x_{j} \in \operatorname{supp}(a)$ and so $a_{j} z_{k}=a_{k} z_{j}=0$, contradicting $a_{j} \neq 0 \neq z_{k}$. Thus, it suffices to prove the claim for $x_{k} \in \operatorname{supp}(z) \cap \operatorname{supp}(a)$.

Let Δ be the graph complement in Γ of the subgraph spanned by supp (a) (so $V \Delta=\operatorname{supp}(a)$ and if $x_{i}, x_{j} \in V \Delta,\left\{x_{i}, x_{j}\right\} \in E \Delta$ if and only if $\left.\left\{x_{i}, x_{j}\right\} \notin E \Gamma\right)$.

If $\left\{x_{i}, x_{j}\right\} \in E \Delta$, then $\left\{x_{i}, x_{j}\right\} \notin E \Gamma$ and so $a_{i} z_{j}=a_{j} z_{i}$, whence, $z_{i} / a_{i}=z_{j} / a_{j}$. If Δ is connected, then for some $r \in G F(p), z_{k}=r a_{k}$ for all $x_{k} \in \operatorname{supp}(a)$ and the claim is proved. Suppose that Δ is not connected. Because Γ contains no triangles, Δ has two connected components. Moreover, because Γ contains no quadrilaterals, one component consists of a single vertex, say x_{i}. Because $\operatorname{supp}(a) \backslash\left\{x_{i}\right\}$ is contained in a connected component of Δ, there is an $r \in G F(p)$ such that for any $x_{k} \in \operatorname{supp}(a) \backslash\left\{x_{i}\right\}, z_{k}=r a_{k}$. Also $\left\{x_{i}, x_{j}\right\} \in E \Gamma$ for any $x_{j} \in \operatorname{supp}(a) \backslash\left\{x_{i}\right\}$ (since $\left.\left\{x_{i}, x_{j}\right\} \notin E \Delta\right)$ and so $x_{i} \in V_{a}$. This proves the claim.

Therefore, if $|\operatorname{supp}(a)| \geq 2$ then $u_{z} \in a^{r} V_{a}$ and so $z \equiv u_{z} v_{z} \equiv a^{r}\left(a^{\alpha}\right)^{s}$ $\bmod V_{a} G^{\prime}$. Hence, $C_{G}(a) \leq\left\langle a, a^{\alpha}, V_{a}\right\rangle G^{\prime}$ and $\left|C_{G}(a): G^{\prime}\right| \leq p^{3}$.

Next, suppose that $|\operatorname{supp}(a)|=1$ so $\operatorname{supp}(a)=\left\{x_{i}\right\}$ for some $i, 1 \leq i \leq n$. For purposes of computing $\left|C_{G}(a): G^{\prime}\right|$, we may assume that $a_{i}=1$ and so $\bar{a}=\overline{x_{i}}$. In this case, if $1 \leq j \leq v$ with $j \neq i,\left\{x_{i}, x_{j^{\alpha}}\right\} \notin E \hat{\Gamma}$ and so $z_{j^{\alpha}}=a_{i} z_{j^{\alpha}}=a_{j} z_{i^{\alpha}}=0$.

Therefore, $\operatorname{supp}(z) \cap V \Gamma^{\alpha} \subseteq\left\{x_{i^{\alpha}}\right\} \subseteq N_{\hat{\Gamma}}\left[x_{i}\right]$. Moreover, if $x_{j} \notin N_{\hat{\Gamma}}\left[x_{i}\right]$ (so $\left\{x_{i}, x_{j}\right\}$ $\notin E \Gamma)$ then because $a_{j}=0, z_{j}=a_{i} z_{j}=a_{j} z_{i}=0$. Hence, $\operatorname{supp}(z) \cap V \Gamma \subseteq N_{\hat{\Gamma}}\left[x_{i}\right]$. Therefore, $\operatorname{supp}(z) \subseteq N_{\hat{\Gamma}}\left[x_{i}\right]$ and so $C_{G}(a)=C_{G}\left(x_{i}\right)=\left\langle N_{\hat{\Gamma}}\left[x_{i}\right]\right\rangle G^{\prime}$. In particular, if x_{i} has valence δ_{i} in Γ (so $\left|N_{\hat{\Gamma}}\left[x_{i}\right]\right|=\delta_{i}+2$), then $\left|C_{G}\left(x_{i}\right): G^{\prime}\right|=p^{\delta_{i}+2}$.

Case 2b: $m= \pm 1$
This is the case precisely when $\bar{a} \in[\bar{G}, \alpha] \cup C_{\bar{G}}(\alpha)$ or equivalently, when $\langle\bar{a}\rangle$ is α-invariant. Let $G_{m}=\left\langle x_{i} x_{i}^{m \alpha}: 1 \leq i \leq v\right\rangle G^{\prime}$ where $m= \pm 1$. Then $G_{-1} / G^{\prime}=$ $[\bar{G}, \alpha]$ and $G_{1} / G^{\prime}=C_{\bar{G}}(\alpha)$ and so (since $p>2$), $G=G_{-1} G_{1}$ and $G_{-1} \cap G_{1}=G^{\prime}$. Also, the map $x \mapsto x x^{m \alpha}$ induces an isomorphism from $H_{\Gamma} G^{\prime} / G^{\prime}$ to G_{m} / G^{\prime} and so $\left|G_{-1}: G^{\prime}\right|=\left|G_{1}: G^{\prime}\right|=\left|H_{\Gamma} G^{\prime} / G^{\prime}\right|=p^{v}$.

Since $m^{2}=1$, Lemma 3.3 (b) implies that $\left[G_{-1}, G_{1}\right]=1$ and so, since $\bar{a} \in \bar{G}_{m}$, $G_{-m} \leq C_{G}(a)$. Therefore, $C_{G}(a)=G_{-m} G_{m} \cap C_{G}(a)=G_{-m}\left(G_{m} \cap C_{G}(a)\right)$.

If $g \in G_{m}, g^{\alpha} \equiv g^{m} \bmod G^{\prime}$, whence, $g \equiv g^{m \alpha} \bmod G^{\prime}$ and so $[a, g]=\left[u_{a}, g\right]$ $\left[u_{a}^{m \alpha}, g^{m \alpha}\right]=\left[u_{a}, g\right]^{2}$. Since $p>2$, it follows that $G_{m} \cap C_{G}(a)=G_{m} \cap C_{G}\left(u_{a}\right)$ and so $C_{G}(a)=G_{-m}\left(G_{m} \cap C_{G}\left(u_{a}\right)\right)$. We claim now that $G_{m} \cap C_{G}\left(u_{a}\right)=G^{\prime}\langle a\rangle$.

By Case 2a, if $\left|\operatorname{supp}\left(u_{a}\right)\right| \geq 2$ then $C_{G}\left(u_{a}\right)=\left\langle u_{a}, u_{a}^{\alpha}, V_{a}\right\rangle G^{\prime}=\left\langle a, u_{a}, V_{a}\right\rangle G^{\prime}=$ $\left\langle u_{a}, V_{a}\right\rangle G^{\prime}\langle a\rangle \leq H_{\Gamma} G^{\prime}\langle a\rangle$ whereas, if $\operatorname{supp}\left(u_{a}\right)=\left\{x_{i}\right\} \subseteq V \Gamma$, then $C_{G}\left(u_{a}\right)=$ $C_{G}\left(x_{i}\right)=\left\langle N_{\hat{\Gamma}}\left[x_{i}\right]\right\rangle G^{\prime}=\left\langle x_{i} x_{i}^{m \alpha}, N_{\Gamma}\left[x_{i}\right]\right\rangle G^{\prime}=\left\langle N_{\Gamma}\left[x_{i}\right]\right\rangle G^{\prime}\langle a\rangle \leq H_{\Gamma} G^{\prime}\langle a\rangle$. In either case, since $G_{m} \cap H_{\Gamma}=1, G_{m} \cap C_{G}\left(u_{a}\right) \leq G_{m} \cap H_{\Gamma} G^{\prime}\langle a\rangle=G^{\prime}\langle a\rangle \leq G_{m} \cap C_{G}\left(u_{a}\right)$, as claimed.

It follows that $C_{G}(a)=G_{-m} G^{\prime}\langle a\rangle$ so $\left|C_{G}(a): G^{\prime}\right|=p\left|G_{-m}: G^{\prime}\right|=p^{v+1}$. This completes the proof of statements (a) and (b) of the proposition.

Finally, statement (c) of the proposition follows easily from the hypotheses that $\delta_{i} \geq 2$ for all $i, 1 \leq i \leq v$, and that Γ has girth at least 5 .

For our purposes, it is unfortunate that (by Lemma 3.3 (c)) the order of its centralizer is not sufficient to distinguish a canonical generator $x_{i} \in V \hat{\Gamma}$ of G from an element of the form $x_{i} x_{i}^{m \alpha}, m \neq \pm 1$. However, by a more judicious choice of the elements ω_{i} introduced in the presentation of $G_{\hat{\Gamma}}$, we can at least ensure that these two types of elements have non-isomorphic centralizers.
Corollary 3.4. Assume the hypotheses of Proposition 3.2. Assume additionally that for each $k, 1 \leq k \leq v$, the element $\omega_{k} \in F(V \hat{\Gamma})$ in the presentation (3.1) is a commutator $\left[x_{r}, x_{s}\right]$, where x_{r} and x_{s} are distinct elements of $N_{\Gamma}\left[x_{k}\right] \backslash\left\{x_{k}\right\}$, and that $\omega_{k^{\alpha}}=\omega_{k}^{\alpha}$. If $a \in G$ such that $C_{G}(a) \cong C_{G}\left(x_{j}\right)$ for some $x_{j} \in V \hat{\Gamma}$ then there exists a unique $x_{i} \in V \hat{\Gamma}$ such that $\left\langle a G^{\prime}\right\rangle=\left\langle x_{i} G^{\prime}\right\rangle$.

Proof. The uniqueness statement is clear. So assume that $C_{G}(a) \cong C_{G}\left(x_{j}\right)$ for some $x_{j} \in V \hat{\Gamma}$. It follows from Proposition 3.2 that $\left\langle a G^{\prime}\right\rangle=\left\langle x_{i}^{l} x_{i}^{m \alpha} G^{\prime}\right\rangle$ for some $x_{i} \in V \hat{\Gamma}$ and $l, m \in G F(p), l \neq \pm m$. If $l=0,\left\langle a G^{\prime}\right\rangle=\left\langle x_{i^{\alpha}} G^{\prime}\right\rangle$ and we are done. If $l \neq 0$, we may assume that $l=1$ (so $m \neq \pm 1)$ and it remains to prove that $m=0$.

Figure 1. The graph Γ_{n}
Let $C_{j}=C_{G}\left(x_{j}\right)$ and $D_{i}=C_{G}\left(x_{i} x_{i}^{m \alpha}\right)$ so $C_{j} \cong C_{G}(a) \cong D_{i}$. Regarding ω_{j} as an element of $G, 1 \neq \omega_{j}=x_{j}^{p} \in C_{j}^{\prime} \cap C_{j}^{p}$ and so $D_{i}^{\prime} \cap D_{i}^{p} \neq 1$.

By Lemma 3.3(c), the map $C_{i} \rightarrow D_{i}, x \mapsto x^{-1} x^{m \alpha}$ is bijective and so it induces an isomorphism $C_{i} / G^{\prime} \rightarrow D_{i} / G^{\prime}$. Hence, $D_{i}=\left\langle x_{l}^{-1} x_{l}^{m \alpha}: x_{l} \in N_{\hat{\Gamma}}\left[x_{i}\right]\right\rangle G^{\prime}$. It follows that $D_{i}^{\prime}=\left\langle u_{r, s}: x_{r}, x_{s} \in N_{\hat{\Gamma}}\left[x_{i}\right]\right\rangle$ where $u_{r, s}=\left[x_{r}^{-1} x_{r}^{m \alpha}, x_{s}^{-1} x_{s}^{m \alpha}\right]=$ $\left[x_{r}, x_{s}\right]^{1+m^{2}}\left[x_{r}, x_{s}^{\alpha}\right]^{-2 m}$. Since $D_{i}^{\prime} \cap D_{i}^{p} \neq 1$, some non-trivial product $\Pi_{r, s} u_{t, s}^{n_{r, s}}$ lies in D_{i}^{p}. But then $\left.\Pi_{r, s}\left[x_{r}, x_{s}^{\alpha}\right]^{-2 m}\right)^{n_{r, s}} \in\left\langle B_{\Gamma}\right\rangle$, whence, because $B_{\Gamma} \cup B_{0}$ is linearly independent over $G F(p)$, each $m n_{r, s}=0$ and so $m=0$.
4. Proof of Theorem 1.1. We consider the nested family of graphs $\Gamma_{n}, n \geq 1$, indicated in Figure 1. (The first of these, Γ_{1}, was used in the proof of [3, Theorem III.6].) Each Γ_{n} has girth 5 and all vertices have valence 2,3 or 4 . In addition, each Γ_{n} has trivial automorphism group. (As the unique vertex of valence $4, x_{6}$ is fixed by every element of $\operatorname{Aut}\left(\Gamma_{n}\right)$, from which it is easily seen that $\operatorname{Aut}\left(\Gamma_{1}\right)=1$. As the subgraph spanned by the vertices of Γ_{n} that lie at most two edges away from x_{6}, Γ_{1} is invariant under (and hence, fixed by) $\operatorname{Aut}\left(\Gamma_{n}\right)$ and the triviality of $\operatorname{Aut}\left(\Gamma_{n}\right)$ follows by induction on n.) Note that $\left|V \Gamma_{n}\right|=4 n+6$.

Fix an odd prime p and an integer $n \geq 1$ and let $\Gamma=\Gamma_{n}$. Let $\hat{\Gamma}$ and α be, respectively, the corresponding prismoidal extension of Γ and the prismoidal
automorphism, as defined in Section 2. We begin by defining explicitly the elements ω_{i} in the presentation (3.1) of the corresponding group $G_{\hat{\Gamma}}$, making use of a decomposition of Γ into oriented paths and cycles.

Observe that Γ may be expressed as $\bigcup_{i=1}^{k+2} \Lambda_{i}$ where Λ_{1} is the oriented cycle $\left(x_{6}, x_{3}, x_{2}, x_{7}, x_{8}\right)$ of length $5, \Lambda_{2}$ is the oriented cycle ($x_{6}, x_{9}, x_{10}, x_{5}, x_{4}$) of length $5, \Lambda_{3}$ is the oriented path $\left(x_{3}, x_{1}, x_{5}\right)$ of length 2 and for $i \geq 4, \Lambda_{i}$ is the oriented path $\left(x_{4 i-9}, x_{4 i-5}, x_{4 i-4}, x_{4 i-3}, x_{4 i-2}, x_{4 i-6}\right)$ of length 5.

If $x \in V \Gamma$, let m be minimal such that $x \in V \Lambda_{m}$. Then x is not one of the ends of Λ_{m} (since, if Λ_{m} is not a cycle, its end vertices lie in Λ_{m-1}) and so we may define x^{σ} and x^{τ} to be, respectively, the vertices immediately preceding and succeeding x in Λ_{m}. (So, for example, $x_{1}^{\sigma}=x_{3}, x_{1}^{\tau}=x_{5}, x_{2}^{\sigma}=x_{3}, x_{2}^{\tau}=x_{7}$ etc.) The functions σ and τ extend to $\hat{\Gamma}$ via $\left(x^{\alpha}\right)^{\sigma}=\left(x^{\sigma}\right)^{\alpha}$ and $\left(x^{\alpha}\right)^{\tau}=\left(x^{\tau}\right)^{\alpha}$. For each $x_{i} \in V \hat{\Gamma}$, we now define $\omega_{i}=\left[x_{i}^{\sigma}, x_{i}^{\tau}\right]$ (whence, $\omega_{i^{\alpha}}=\omega_{i}^{\alpha}$). (Of course, this explicit definition of the ω_{i} 's is consistent with the hypotheses of Corollary 3.4.)

Finally, we construct the groups postulated by Theorem 1.1.
Let p be an odd prime and let r be a positive integer. Let c be an integer such that $c>5 r+4$ and $c \equiv 1 \bmod 4$. For $1 \leq k \leq r$, let $v_{k}=c^{k}+1\left(\right.$ so $\left.v_{k} \equiv 2 \bmod 4\right)$ and let $n_{k}=\left(v_{k}-6\right) / 4 \in \mathbb{Z}$. (Thus, $\left|V \Gamma_{n_{k}}\right|=4 n_{k}+6=v_{k}$.) Let $G_{k}=G_{\hat{\Gamma}_{n_{k}}}$ be the corresponding p-group (as defined by (3.1) with the ω_{i} 's as specified above) and let $G=G_{1} \times G_{2} \times \ldots \times G_{r}$.

Lemma 4.1. For each $k, 1 \leq k \leq r, G^{\prime} G_{k}$ is a characteristic subgroup of G.
Proof. Let $1 \leq k \leq r$ and let $x \in V \Gamma_{n_{k}}$. By Proposition 3.2, $\left|C_{G_{k}}(x): G_{k}^{\prime}\right|=p^{\delta_{x}+2}$ and so $\left|x^{G}\right|=\left|G_{k}: G_{k}^{\prime}\right| /\left|C_{G_{k}}(x): G_{k}^{\prime}\right|=p^{2 v_{k}-\delta_{x}-2}=p^{2 c^{k}-\delta_{x}}$, where δ_{x} is the valence of x in $\Gamma_{n_{k}}$ (so $2 \leq \delta_{x} \leq 4$). Because $G_{k}=\left\langle V \hat{\Gamma}_{n_{k}}\right\rangle$, it suffices to show that the elements of G with precisely $p^{2 c^{k}-\delta_{x}}$ conjugates all lie in $G^{\prime} G_{k}$.

Suppose that $y=\left(y_{1}, \ldots, y_{r}\right) \in G$ (with each $\left.y_{i} \in G_{i}\right)$ such that $\left|x^{G}\right|=\left|y^{G}\right|$. Proposition 3.2 implies that $\left|y_{j}^{G}\right|=\left|y_{j}^{G_{j}}\right|=\left|G_{j}: G_{j}^{\prime}\right| /\left|C_{G_{j}}\left(y_{j}\right): G_{j}^{\prime}\right|=p^{\eta_{j} v_{j}-\epsilon_{j}}$, where either $1 \leq \eta_{j} \leq 2$ and $1 \leq \epsilon_{j} \leq 6$ or (if $y_{j} \in G_{j}^{\prime}$) $\eta_{j}=\epsilon_{j}=0$. Since $\left|y^{G}\right|=$ $\left|y_{1}^{G}\right| \ldots\left|y_{r}^{G}\right|, \log _{p}\left|y^{G}\right|=\sum_{j=1}^{r}\left(\eta_{j} v_{j}-\epsilon_{j}\right)=\sum_{j=1}^{r} \eta_{j} c^{j}+\sum_{j=1}^{r}\left(\eta_{j}-\epsilon_{j}\right)$. Equating this with $\log _{p}\left|x^{G}\right|$ yields that $\delta_{x}+\sum_{j=1}^{r}\left(\eta_{j}-\epsilon_{j}\right)=2 c^{k}-\sum_{j=1}^{r} \eta_{j} c^{j}$ and so c divides $\delta_{x}+\sum_{j=1}^{r}\left(\eta_{j}-\epsilon_{j}\right)$. However, $\left|\delta_{x}+\sum_{j=1}^{r}\left(\eta_{j}-\epsilon_{j}\right)\right| \leq\left|\delta_{x}\right|+\sum_{j=1}^{r}\left|\eta_{j}-\epsilon_{j}\right| \leq 4+5 r<c$ and so $2 c^{k}-\sum_{j=1}^{r} \eta_{j} c^{j}=0$. Since $0 \leq \eta_{j} \leq 2<c$ for all j, it follows that $\eta_{k}=2$ and $\eta_{j}=0$ for all $j \neq k$. Therefore, $y_{j} \in G^{\prime}$ for all $j \neq k$ and so $y \in G^{\prime} G_{k}$.

For $1 \leq k \leq r$, let α_{k} denote the prismoidal automorphism of $\hat{\Gamma}_{n_{k}}$ and also the corresponding involutary automorphisms of G_{k} and of G. By Proposition 1, $\operatorname{Aut}\left(\hat{\Gamma}_{n_{k}}\right)=\left\langle\alpha_{k}\right\rangle$. Let $E=\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\rangle \leq \operatorname{Aut}(G)$, so E is an elementary abelian 2-subgroup of rank r. We shall prove that G is an A-group, that $A_{\mathcal{C}}(G)=$ $\operatorname{Aut}_{c}(G)$ and that $\operatorname{Aut}(G)$ is a semidirect product of E with $A_{\mathcal{C}}(G)$.

Suppose that $\beta \in \operatorname{Aut}(G)$ and let $1 \leq k \leq r$. By Lemma 4.1, if $a \in G_{k}, a^{\beta} \in b G^{\prime}$ for some $b \in G_{k}$. If $H_{k}=\prod_{j \neq k} G_{j}^{\prime}$, then $G^{\prime}=H_{k} \times G_{k}^{\prime}$ and so $H_{k} \times C_{G_{k}}(a)=$ $C_{G^{\prime} G_{k}}(a) \cong C_{G^{\prime} G_{k}}\left(a^{\beta}\right)=C_{G^{\prime} G_{k}}(b)=H_{k} \times C_{G_{k}}(b)$. Therefore, $C_{G_{k}}(a) \cong C_{G_{k}}(b)$.

It follows from Corollary 3.4 that there is a permutation θ_{k} of $V \hat{\Gamma}_{n_{k}}$ such that for any $x \in V \hat{\Gamma}_{n_{k}},\left\langle x^{\beta} G_{k}^{\prime}\right\rangle=\left\langle x^{\theta_{k}} G_{k}^{\prime}\right\rangle$ and so, for each such x there is a $c_{x} \in$ $G F(p) \backslash\{0\}$ such that $x^{\beta} \equiv\left(x^{\theta_{k}}\right)^{c_{x}} \bmod G_{k}^{\prime}$. In fact, $\theta_{k} \in \operatorname{Aut}\left(\hat{\Gamma}_{n_{k}}\right)=\left\langle\alpha_{k}\right\rangle \leq E$ because if $\{x, y\} \in E \hat{\Gamma}_{k}$, then $[x, y]=1$ and so $\left[x^{\theta_{k}}, y^{\theta_{k}}\right]^{c_{x} c_{y}}=[x, y]^{\beta}=1$, whence $\left[x^{\theta_{k}}, y^{\theta_{k}}\right]=1$ and $\left\{x^{\theta_{k}}, y^{\theta_{k}}\right\} \in E \hat{\Gamma}_{n_{k}}$.

If $x \in V \Gamma_{n_{k}}$ then $G_{k}^{p} \leq G_{k}^{\prime} \leq C_{G_{k}}(E)$ and so $\left(x^{p}\right)^{\beta}=\left(x^{p}\right)^{\theta_{k} c_{x}}=\left(x^{p}\right)^{c_{x}}=$ $\left[x^{\sigma}, x^{\tau}\right]^{c_{x}}$. But also, $\left(x^{p}\right)^{\beta}=\left[x^{\sigma}, x^{\tau}\right]^{\beta}=\left[\left(x^{\sigma}\right)^{\beta},\left(x^{\tau}\right)^{\beta}\right]=\left[\left(x^{\sigma}\right)^{\theta_{k} c_{x} \sigma},\left(x^{\tau}\right)^{\theta_{k} c_{x^{\tau}}}\right]=$ $\left[x^{\sigma}, x^{\tau}\right]^{c_{x} \sigma} c_{x^{\tau}}$. Therefore, $c_{x}=c_{x^{\sigma}} c_{x^{\tau}}$ for all $x \in V \Gamma_{n_{k}}$

We claim that $c_{x}=1$ for all $x \in V \hat{\Gamma}_{n_{k}}$. This is a consequence of the following general observation: Assume that in a graph, Λ is an oriented path of length l with vertices (in sequence) $v_{0}, v_{1}, v_{2}, \ldots, v_{l}$. Suppose that K is a field and f is a function from $V \Lambda$ to $K \backslash\{0\}$ such that if $f_{i}=f\left(v_{i}\right)$, then $f_{i}=f_{i-1} f_{i+1}$ for $1 \leq i \leq l-1$ (and also, $f_{0}=f_{l}=f_{l-1} f_{1}$ if Λ is a cycle with $v_{0}=v_{l}$). Then for any non-negative integer $j, f_{6 j}=f_{0}, f_{6 j+1}=f_{1}, f_{6 j+2}=f_{1} f_{0}^{-1}, f_{6 j+3}=f_{0}^{-1}, f_{6 j+4}=f_{1}^{-1}$ and $f_{6 j+5}=f_{0} f_{1}^{-1}$. If Λ is a cycle with $l \equiv \pm 1 \bmod 6$, it follows that $f_{i}=1$ for all i. Also, if Λ is a path (cycle or not) with $l \equiv \pm 1 \bmod 3$ and such that $f_{0}=1=f_{l}$ then, again, $f_{i}=1$ for all i.

Because $c_{x}=c_{x^{\sigma}} c_{x^{\tau}}$ for all $x \in V \Gamma_{n_{k}}$, applying these considerations successively to the paths $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{n_{k}+2}$ in the decomposition $\Gamma_{n_{k}}=\bigcup_{i=1}^{n_{k}+2} \Lambda_{i}$ described earlier, we conclude that $c_{x}=1$ for all $x \in V \Gamma_{n_{k}}$. Similarly, $c_{x}=1$ for all $x \in V \Gamma_{n_{k}}^{\alpha}$.

Therefore, for any $x \in V \hat{\Gamma}_{n_{k}}$ (and hence, for any $x \in G_{k}$), $x^{\beta} \equiv x^{\theta_{k}} \bmod G_{k}^{\prime}$. It follows that if $\theta=\left(\theta_{1}, \ldots, \theta_{r}\right) \in E$ then $g^{\beta} \equiv g^{\theta} \bmod G^{\prime}$ for all $g \in G$ and so $\beta \in C_{\operatorname{Aut}(G)}\left(G / G^{\prime}\right) E \leq \operatorname{Aut}_{c}(G) E$. Also, because $\left[x, x^{\alpha_{k}}\right]=1$ for all $x \in G_{k}$, $\left[x, x^{\theta_{k}}\right]=1$ for all $x \in G_{k}$ and so $\left[g, g^{\beta}\right]=1$ for all $g \in G$. Therefore, G is an A-group and $\operatorname{Aut}(G)=C_{\operatorname{Aut}(G)}\left(G / G^{\prime}\right) E=\operatorname{Aut}_{c}(G) E$.

If $\gamma \in E$ and $\gamma \neq 1$, then γ maps some $\Gamma_{n_{k}}$ to $\Gamma_{n_{k}}^{\alpha_{k}}$. If $\{x, y\} \in E \Gamma_{n_{k}}$ then since $\left\{x^{\alpha_{k}}, y\right\} \notin E \hat{\Gamma}_{n_{k}}, y \in C_{G_{k}}(x) \backslash C_{G_{k}}\left(x^{\alpha_{k}}\right)$. We conclude that $\gamma \notin A_{\mathcal{C}}(G)$ and so $E \cap A_{\mathcal{C}}(G)=1$, whence, $A_{\mathcal{C}}(G)=\operatorname{Aut}_{c}(G)$. Therefore, $\operatorname{Aut}(G) / A_{\mathcal{C}}(G) \cong E \cong$ $\left(\mathbb{Z}_{2}\right)^{r}$. Since r was chosen arbitrarily, the proof of Theorem 1.1 is complete.

References

[1] M. Deaconescu, G. Silberberg, and G. L. Walls, On commuting automorphisms of groups, Arch. Math. 79, 423-429 (2002).
[2] H. Heineken and H. Liebeck, The occurrence of finite groups in the automorphism groups of nilpotent groups of class 2, Arch. Math. 25 (1974), 8-16
[3] C. J. Maxson and M. R. Pettet, Maximal subrings and E-groups, Arch. Math 88, 392-402 (2007).
[4] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

Martin R. Pettet, Department of Mathematics, The University of Toledo, Toledo, Ohio 43606, U.S.A.
e-mail: mpettet@math.utoledo.edu

Received: 23 March 2008
Revised: 20 May 2008

