Arch. Math. Online First © 2008 Birkhäuser Verlag Basel/Switzerland DOI 10.1007/s00013-008-2807-5

Archiv der Mathematik

On automorphisms of A-groups

MARTIN R. PETTET

Abstract. Let G be an A-group (i.e. a group in which $xx^{\alpha} = x^{\alpha}x$ for all $x \in G$, $\alpha \in \operatorname{Aut}(G)$) and let $A_{\mathcal{C}}(G)$ denote the subgroup of $\operatorname{Aut}(G)$ consisting of all automorphisms that leave invariant the centralizer of each element of G. The quotient $\operatorname{Aut}(G)/A_{\mathcal{C}}(G)$ is an elementary abelian 2-group and natural analogies exist to suggest that it might always be trivial. It is shown that, in fact, for any odd prime p and any positive integer r, there exist infinitely many finite pA-groups G for which $\operatorname{Aut}(G)/A_{\mathcal{C}}(G)$ has rank r.

Mathematics Subject Classification (2000). Primary 20D45; Secondary 20D15, 16Y30.

Keywords. A-group, graph, automorphism.

1. Introduction. For an (additively written) group G, let $M_0(G)$ be the near-ring of all identity-preserving maps from G to itself (under pointwise addition and composition) and let S be a semigroup (under composition) of endomorphisms of G. A problem that has attracted some interest among near-ring theorists is to characterize those G for which the subnear-ring of $M_0(G)$ generated by S is actually a ring. This is the case precisely when x^{η} commutes with x for all $x \in G$, $\eta \in S$ and so, despite its near-ring theoretic motivation, the question is essentially a group theoretic one.

If this commuting hypothesis holds for S = Inn(G), the group of inner automorphisms of G, then G is a 2-Engel group. As follows from [4, 12.3.6], such groups are precisely those in which the centralizer of every element is invariant under S(i.e. normal in G). If it holds for S = End(G), the semigroup of all endomorphisms of G, G is said to be an E-group. Recently, it was shown [3, Theorem III.5] that finite E-groups are, again, precisely those in which each centralizer is invariant under S (i.e. fully invariant in G). In view of these facts, the question was posed in [3] whether finite groups satisfying the commuting hypothesis with S = Aut(G) (i.e. A-groups) are precisely those in which all centralizers are characteristic. The purpose of this note is to provide a negative answer to this question.

Let $A_{\mathcal{C}}(G)$ denote the subgroup of $\operatorname{Aut}(G)$ consisting of those automorphisms of G that leave invariant the centralizer $C_G(x)$ of each element x of G. If $\operatorname{Aut}_c(G)$ denotes the group $C_{\operatorname{Aut}(G)}(G/Z(G))$ of central automorphisms of G, then

$$\operatorname{Aut}_{c}(G) \leq A_{\mathcal{C}}(G) = \bigcap_{x \in G} N_{\operatorname{Aut}(G)}(C_{G}(x)) \trianglelefteq \operatorname{Aut}(G).$$

For G to be an A-group, it is clearly sufficient that $\operatorname{Aut}(G)/A_{\mathcal{C}}(G) = 1$. The question alluded to in the preceding paragraph is whether this condition is necessary.

If G is an A-group and $\alpha \in \operatorname{Aut}(G)$, the equations $[x, x^{\alpha}] = [y, y^{\alpha}] = 1 = [xy, (xy)^{\alpha}]$ yield that $[x^{\alpha}, y] = [x, y^{\alpha}]$ for all $x, y \in G$. (See, for example, [1, Lemma 2.1] or [3, Lemma III.1].) It follows that if $y \in C_G(x)$ then $[x, y^{\alpha^2}] = [x^{\alpha}, y^{\alpha}] = [x, y]^{\alpha} = 1$ and so $y^{\alpha^2} \in C_G(x)$. Therefore, $\alpha^2 \in A_{\mathcal{C}}(G)$ for all $\alpha \in \operatorname{Aut}(G)$ and so the quotient $\operatorname{Aut}(G)/A_{\mathcal{C}}(G)$ is an elementary abelian 2-group. (See also [1, Lemma 2.4].) This represents the limit of what can be said in general about this quotient for, not only can $\operatorname{Aut}(G)/A_{\mathcal{C}}(G)$ be non-trivial, it can be of arbitrary rank.

Theorem 1.1. Let r be a positive integer and p be an odd prime. Then there exist infinitely many finite p-groups G such that G is an A-group, $A_{\mathcal{C}}(G) = \operatorname{Aut}_{c}(G)$ and the elementary abelian 2-group $\operatorname{Aut}(G)/A_{\mathcal{C}}(G)$ has rank r.

As mentioned above, if G is an E-group, all centralizers are fully invariant and so $\operatorname{Aut}(G)/A_{\mathcal{C}}(G) = 1$. Thus, the theorem provides infinitely many examples of A-groups that are not E-groups, extending [3, Theorem III.6]. As in the earlier result, the argument is a variation of the graph theoretic approach developed by Heineken and Liebeck [2] and hinges on a determination of the centralizers in a p-group $G_{\hat{\Gamma}}$ whose presentation is encoded by a graph $\hat{\Gamma}$ (Proposition 3.2). In certain circumstances, $G_{\hat{\Gamma}}$ is an A-group with $|\operatorname{Aut}(G_{\hat{\Gamma}})/A_{\mathcal{C}}(G_{\hat{\Gamma}})| = 2$ and direct products of such groups furnish the examples that establish the theorem.

Except as motivation, near-ring theory plays no role in this note and so we shall write all groups multiplicatively.

2. The prismoidal extension of a graph. Let Γ be a finite (undirected) graph with vertex set $V\Gamma$ and edge set $E\Gamma$. By the *prismoidal extension* $\hat{\Gamma}$ of Γ , we shall mean the graph obtained by taking an isomorphic copy Γ^{α} of Γ (with graph isomorphism $\alpha : \Gamma \to \Gamma^{\alpha}$) and setting $V\hat{\Gamma} = V\Gamma \cup V\Gamma^{\alpha}$ and $E\hat{\Gamma} = E\Gamma \cup E\Gamma^{\alpha} \cup E^*$, where $E^* = \{\{x, x^{\alpha}\} : x \in V\Gamma\}$. (Alternatively, $\hat{\Gamma}$ may be described as the graph Cartesian product of Γ with the Cayley graph of a cyclic group of order 2.)

We shall refer to the involutary automorphism of $\hat{\Gamma}$ induced by α (also denoted by α) as the *prismoidal automorphism*. Extending the action of Aut(Γ) to $\hat{\Gamma}$ by defining $(x^{\alpha})^{\gamma} = x^{\gamma\alpha}$ for all $x \in V\Gamma$ and $\gamma \in Aut(\Gamma)$ allows the direct product Aut(Γ) × $\langle \alpha \rangle$ to be identified as a subgroup of Aut($\hat{\Gamma}$). If $x \in V\Gamma$, denote by $N_{\Gamma}[x]$ (the *neighborhood* of x) the subset of $V\Gamma$ consisting of x and all vertices adjacent to it (i.e. $N_{\Gamma}[x] = \{x\} \cup \{y \in V\Gamma : \{x, y\} \in E\Gamma\}$). Recall that the *girth* of Γ is the length of the shortest irreducible cycle in Γ .

Proposition 2.1. Let Γ be a connected graph of girth at least 5 in which every vertex has valence at least 2. Then $\operatorname{Aut}(\hat{\Gamma}) = \operatorname{Aut}(\Gamma) \times \langle \alpha \rangle$.

Proof. Note that under the hypotheses, $\hat{\Gamma}$ is connected with girth 4, any quadrilateral (ie. cycle of length 4) in $\hat{\Gamma}$ has one pair of opposite edges in E^* , and no two edges in E^* share a common vertex.

Let $\beta \in \operatorname{Aut}(\hat{\Gamma})$ and let $x \in V\Gamma$. Let y and z be distinct vertices in $N_{\Gamma}[x] \setminus \{x\}$. Then the six vertices $\{y, x, z, z^{\alpha}, x^{\alpha}, y^{\alpha}\}$ define two quadrilaterals with a unique common edge $\{x, x^{\alpha}\} \in E^*$ and of course, the six images of these vertices under β form a similar configuration. In the quadrilateral $\{y^{\beta}, x^{\beta}, x^{\alpha\beta}, y^{\alpha\beta}\}$, the pair of opposite edges $\{x^{\beta}, y^{\beta}\}$ and $\{x^{\alpha\beta}, y^{\alpha\beta}\}$ cannot lie in E^* for if so, neither of the edges $\{x^{\beta}, z^{\beta}\}$ nor $\{x^{\beta}, x^{\alpha\beta}\}$ could (by virtue of sharing the vertex x^{β} with $\{x^{\beta}, y^{\beta}\}$) lie in E^* and so the quadrilateral $\{x^{\beta}, z^{\beta}, z^{\alpha\beta}, x^{\alpha\beta}\}$ would have no edges in E^* . It follows that the edge $\{x, x^{\alpha}\}^{\beta} = \{x^{\beta}, x^{\alpha\beta}\}$ lies in E^* and so $x^{\alpha\beta} = x^{\beta\alpha}$. Since x and β were arbitrary, this proves that E^* is invariant under $\operatorname{Aut}(\hat{\Gamma})$ and $\alpha \in Z(\operatorname{Aut}(\hat{\Gamma}))$.

Because Γ is connected and E^* is invariant under $\operatorname{Aut}(\hat{\Gamma})$, it follows that each element of $\operatorname{Aut}(\hat{\Gamma})$ either leaves the subgraphs Γ and Γ^{α} invariant or it interchanges them. Therefore, $|\operatorname{Aut}(\hat{\Gamma}) : \operatorname{Aut}(\Gamma)| = 2$ and so $\operatorname{Aut}(\hat{\Gamma}) = \operatorname{Aut}(\Gamma) \times \langle \alpha \rangle$. \Box

3. Groups defined by prismoidal extensions. We continue to assume in this section that Γ is a finite graph of girth at least 5 having no vertices of valence less than 2 (although connectedness is no longer needed). Let $V\Gamma = \{x_i : 1 \leq i \leq v\}$ and let $\hat{\Gamma}$ and α be, respectively, the prismoidal extension of Γ and the prismoidal automorphism, as defined in Section 2. The symbols i^{α} , $1 \leq i \leq v$, will be used as subscripts for the vertices of Γ^{α} so that $x_{i^{\alpha}} = x_i^{\alpha}$ and $x_{i^{\alpha}}^{\alpha} = x_i$. However, when there is no chance of ambiguity, we will occasionally use x_i (with the range of i unspecified) to denote any vertex of $\hat{\Gamma}$.

Let $F = F(V\hat{\Gamma})$ be the free group on $V\hat{\Gamma}$ so α induces an automorphism of order 2 (still to be denoted by α) of F. For each $x_i \in V\Gamma$, let ω_i be an element of F' (to be defined more explicitly later) and let $\omega_{i^{\alpha}} = \omega_i^{\alpha}$.

For an odd prime p and a particular choice of the ω_i 's, define the group $G_{\hat{\Gamma}} = \langle V \hat{\Gamma} : R \rangle = F/R^F$ where $R \subseteq F$ consists of the following relators:

$$(3.1) \quad \begin{cases} \text{(i) } [[x_i, x_j], x_k] \text{ for all } x_i, x_j, x_k \in V\hat{\Gamma} \\ \text{(ii) } \omega_i^{-1} x_i^p \text{ and } \omega_{i^{\alpha}}^{-1} x_{i^{\alpha}}^p \text{ for } 1 \leq i \leq v \\ \text{(iii) } [x_i, x_j] \text{ and } [x_{i^{\alpha}}, x_{j^{\alpha}}] \text{ if } 1 \leq i < j \leq v \text{ and } \{x_i, x_j\} \in E\Gamma \\ \text{(iv) } [x_i, x_j]^{-1} [x_{i^{\alpha}}, x_{j^{\alpha}}] \text{ and } [x_i, x_{j^{\alpha}}]^{-1} [x_{i^{\alpha}}, x_j] \text{ for } 1 \leq i < j \leq v \end{cases}$$

Let $G = G_{\hat{\Gamma}}$. We may identify $V\hat{\Gamma}$ with the set of generators $\{x_i R^F : x_i \in V\hat{\Gamma}\}$ of G, and in fact, when it is clear that we are referring to elements of G, we shall denote the generator $x_i R^F$ by x_i and $\omega_i R^F$ by ω_i .

By (i) and (ii) of (3.1), $G^p \leq G' \leq Z(G)$ and so both the power map $x \mapsto x^p$ and (for fixed $g \in G$) the maps $x \mapsto [x, g]$ and $x \mapsto [g, x]$ are endomorphisms of G. Both G' and G/G' are elementary abelian p-groups and so, may be regarded as (multiplicatively-written) vector spaces over the finite field GF(p).

Let $H_{\Gamma} = \langle x_i : x_i \in V\Gamma \rangle$ (so $G = \langle H_{\Gamma}, (H_{\Gamma})^{\alpha} \rangle$ and $H_{\Gamma} \cap (H_{\Gamma})^{\alpha} = 1$). Let $B_{\Gamma} = \{ [x_i, x_j] : 1 \leq i < j \leq v, \{x_i, x_j\} \notin E\Gamma \}$ and $B_0 = \{ [x_i, x_{j^{\alpha}}] : 1 \leq i < j \leq v \}$ so B_{Γ} is a basis for H'_{Γ} and $B_{\Gamma} \cup B_0$ is a basis for $G'_{\hat{\Gamma}} = G'$. Because $R \cup R^{-1}$ is α -invariant, α induces an automorphism of order 2 (again denoted by α) of Gwith $G' \leq C_G(\alpha)$ (by (3.1(iv)). Also, $[x, y^{\alpha}] = [x, y^{\alpha}]^{\alpha} = [x^{\alpha}, y^{\alpha^2}] = [x^{\alpha}, y]$ for all $x, y \in G$ and so $[x, x^{\alpha}] = [x^{\alpha}, x] = [x, x^{\alpha}]^{-1}$. Since p > 2, $[x, x^{\alpha}] = 1$ for all $x \in G$.

Definition 3.1. If $x \in G = G_{\hat{\Gamma}}$ and $x \equiv \prod_{i=1}^{v} x_i^{e_i} \prod_{i=1}^{v} x_i^{e_i^{\alpha}} \mod G'$ where $e_i, e_{i^{\alpha}} \in GF(p)$, then supp(x) (the support of x) denotes the set

$$\{x_i \in V\Gamma : e_i \neq 0\} \cup \{x_{i^{\alpha}} \in V\Gamma^{\alpha} : e_{i^{\alpha}} \neq 0\}.$$

The key to Theorem 1.1 is the following technical proposition that severely restricts the possibilities for the order of the centralizer of an element of $G_{\hat{r}}$:

Proposition 3.2. Assume that Γ is a graph of girth at least 5 such that every vertex of Γ has valence at least 2. Let $V\Gamma = \{x_i : 1 \leq i \leq v\}$ and for $1 \leq i \leq v$, let δ_i be the valence of x_i in Γ . Let $G = G_{\widehat{\Gamma}}$ and $\overline{G} = G/G'$ and suppose that $\overline{1} \neq \overline{a} \in \overline{G}$.

- (a) If $\bar{a} \in [\bar{G}, \alpha] \cup C_{\bar{G}}(\alpha)$ then $|C_G(a) : G'| = p^{v+1}$.
- (b) If $\bar{a} \notin [\bar{G}, \alpha] \cup C_{\bar{G}}(\alpha)$ then $|C_{G}(a) : G'| \le p^{3}$ unless $\bar{a} \in \langle \bar{x}_{i}, \bar{x}_{i}^{\alpha} \rangle$ for some $x_{i} \in V\Gamma$, in which case $|C_{G}(a) : G'| = p^{\delta_{i}+2}$.
- (c) $3 < \delta_i + 2 < v + 1$ for all $i, 1 \le i \le v$.

Proof. Let $\bar{1} \neq \bar{a} \in \bar{G}$ so $a \equiv u_a v_a \neq 1 \mod G'$, where $u_a = \prod_{k=1}^v x_k^{a_k} \in H_{\Gamma}$ and $v_a = \prod_{k=1}^v x_k^{a_k\alpha} \in H_{\Gamma}^{\alpha}$ with $a_k, a_{k^{\alpha}} \in GF(p)$ for $1 \leq k \leq v$. Replacing a by a^{α} if necessary, we may assume that $u_a \neq 1 \mod G'$ (i.e. $supp(a) \cap V\Gamma \neq \emptyset$).

Let $z \in C_G(a)$ so $z \equiv u_z v_z \mod G'$, where $u_z = \prod_{k=1}^v x_k^{z_k} \in H_{\Gamma}$ and $v_z = \prod_{k=1}^v x_k^{z_k \alpha} \in H_{\Gamma}$ with $z_k, z_{k^{\alpha}} \in GF(p)$ for $1 \leq k \leq v$.

For any $x_i, x_j \in V\hat{\Gamma}$, $[x_i, x_j] = [x_{i^{\alpha}}, x_{j^{\alpha}}] = [x_j, x_i]^{-1} = [x_{j^{\alpha}}, x_{i^{\alpha}}]^{-1}$ and if $\{x_i.x_j\} \notin E\hat{\Gamma}$ (i.e. $[x_i, x_j] \neq 1$), then one of these four elements lies in the basis $B_{\Gamma} \cup B_0$ of G'. Because $1 = [a, z] = \prod_{x_i, x_j \in V\hat{\Gamma}} [x_i, x_j]^{a_i z_j}$, expressing this product in terms of $B_{\Gamma} \cup B_0$ yields that if $\{x_i, x_j\} \notin E\hat{\Gamma}$, then $a_i z_j + a_{i^{\alpha}} z_{j^{\alpha}} - a_j z_i - a_{j^{\alpha}} z_{i^{\alpha}} = 0$. This equation holds vacuously if $\{x_i, x_j\} \in E^*$ (i.e. if $j = i^{\alpha}$) and so

$$(3.2) a_i z_j + a_{i^{\alpha}} z_{j^{\alpha}} = a_j z_i + a_{j^{\alpha}} z_{i^{\alpha}} \text{ if } \{x_i, x_j\} \notin E\Gamma \cup E\Gamma^{\alpha}.$$

Case 1: $\bar{a} \notin \langle \bar{u}_a, \bar{u}_a^{\alpha} \rangle$

Let $x_i \in supp(a) \cap V\Gamma$ (so $a_i \neq 0$) and let $m = a_{i^{\alpha}}/a_i$. Then $a_{j^{\alpha}}/a_j \neq m$ for some j such that $1 \leq j \leq v$ (for otherwise, $\bar{a} = \bar{u}_a \bar{u}_a^{m\alpha} \in \langle \bar{u}_a, \bar{u}_a^{\alpha} \rangle$) and so, if $d_{i,j} = \det \begin{pmatrix} a_i & a_{i^{\alpha}} \\ a_j & a_{j^{\alpha}} \end{pmatrix}$, then $d_{i,j} \neq 0$.

If $1 \leq k \leq v$ then certainly none of the pairs $\{x_i, x_{k^{\alpha}}\}, \{x_j, x_{k^{\alpha}}\}$ or $\{x_i, x_{j^{\alpha}}\}$ lies in $E\Gamma \cup E\Gamma^{\alpha}$ and so by (3.2),

- (a) $a_i z_{k^{\alpha}} + a_{i^{\alpha}} z_k = a_{k^{\alpha}} z_i + a_k z_{i^{\alpha}}$
- (b) $a_j z_{k^{\alpha}} + a_{j^{\alpha}} z_k = a_{k^{\alpha}} z_j + a_k z_{j^{\alpha}}$ and
- (c) $a_i z_{j^{\alpha}} + a_{i^{\alpha}} z_j = a_{j^{\alpha}} z_i + a_j z_{i^{\alpha}}.$

From (a) and (b),
$$\begin{pmatrix} a_i & a_{i^{\alpha}} \\ a_j & a_{j^{\alpha}} \end{pmatrix} \begin{pmatrix} z_{k^{\alpha}} \\ z_k \end{pmatrix} = \begin{pmatrix} z_i & z_{i^{\alpha}} \\ z_j & z_{j^{\alpha}} \end{pmatrix} \begin{pmatrix} a_{k^{\alpha}} \\ a_k \end{pmatrix}$$
 and so
 $\begin{pmatrix} z_{k^{\alpha}} \\ z_k \end{pmatrix} = \begin{pmatrix} a_i & a_{i^{\alpha}} \\ a_j & a_{j^{\alpha}} \end{pmatrix}^{-1} \begin{pmatrix} z_i & z_{i^{\alpha}} \\ z_j & z_{j^{\alpha}} \end{pmatrix} \begin{pmatrix} a_{k^{\alpha}} \\ a_k \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} a_{k^{\alpha}} \\ a_k \end{pmatrix}$

where $A = (1/d_{i,j})(a_j \circ z_i - a_i \circ z_j)$ and $D = (1/d_{i,j})(-a_j z_i \circ + a_i z_j \circ)$ But by (c), A = D and so $z_k \circ = Aa_k \circ + Ba_k$ and $z_k = Ca_k \circ + Aa_k$. Thus, if $1 \leq k \leq v$, then $x_k^{z_k} = x_k^{Ca_k \circ + Aa_k} \equiv (x_k^{a_k})^A (x_{k\alpha}^{a_k \circ})^{\alpha C} \mod G'$ and $x_{k\alpha}^{z_k \circ} = x_{k\alpha}^{Aa_k \circ + Ba_k} \equiv (x_k^{a_k})^{\alpha B} (x_{k\alpha}^{a_k})^A \mod G'$. Therefore, $z \equiv u_a^A v_a^{\alpha C} u_a^{\alpha B} v_a^A \equiv a^A u_a^{\alpha B} v_a^{\alpha C} \mod G'$ and so $z \in \langle a, u_a^{\alpha}, v_a^{\alpha} \rangle G'$. Since z was chosen arbitrarily in $C_G(a)$, it follows that $C_G(a) \leq \langle a, u_a^{\alpha}, v_a^{\alpha} \rangle G'$ and so $|C_G(a) \leq (a, a^{\alpha}) G'$ and $|C_G(a) \leq G'| \leq p^2$.)

Case 2: $\bar{a} \in \langle \bar{u}_a, \bar{u}_a^{\alpha} \rangle$

In this case, $\bar{a} = \bar{u}_a^l \bar{u}_a^{m\alpha}$ for some $l, m \in GF(p)$. Because we assumed that $supp(a) \cap V\Gamma \neq \emptyset, l \neq 0$ and so if $r = l^{-1} \in GF(p), \bar{a}^r = \bar{u}_a \bar{u}_a^{mr\alpha}$. Since $|C_G(a)| = |C_G(a^r)|$, we may assume that l = 1, whence $\bar{a} = \bar{u}_a \bar{u}_a^{m\alpha}$.

Before proceeding with this case, we note the following:

Lemma 3.3. Let $u, z \in G$.

- (a) $[uu^{m\alpha}, z] = [u, zz^{m\alpha}]$ and in particular, $z \in C_G(uu^{m\alpha})$ if and only if $zz^{m\alpha} \in C_G(u)$.
- (b) $[z^{-1}z^{m\alpha}, uu^{m\alpha}] = [z, u]^{m^2 1}$ and in particular, if $m \neq \pm 1$ then $z \in C_G(u)$ if and only if $z^{-1}z^{m\alpha} \in C_G(uu^{m\alpha})$.
- (c) If $m \neq \pm 1$, the maps $C_G(uu^{m\alpha}) \to C_G(u)$ and $C_G(u) \to C_G(uu^{m\alpha})$ defined by $x \mapsto xx^{m\alpha}$ and $x \mapsto x^{-1}x^{m\alpha}$, respectively, are each bijective and so $|C_G(uu^{m\alpha})| = |C_G(u)|.$

Proof. Using the fact that for any $g \in G$, the maps $x \mapsto [x, g]$ and $x \mapsto [g, x]$ are endomorphisms, statement (a) follows from the computation

$$[uu^{m\alpha}, z] = [u, z][u^{\alpha}, z]^m = [u, z][u, z^{\alpha}]^m = [u, zz^{m\alpha}]$$

M. R. Pettet

and (b) follows from

$$[z^{-1}z^{m\alpha}, uu^{m\alpha}] = [z, u]^{-1}[z, u^{\alpha}]^{-m}[z^{\alpha}, u]^{m}[z^{\alpha}, u^{\alpha}]^{m^{2}} = [z, u]^{m^{2}-1}.$$

Because $xx^{\alpha} = x^{\alpha}x$ for all $x \in G$, the set $\{a + b\alpha : a, b \in GF(p)\} \subseteq M_0(G)$ is a ring in which $(1 + m\alpha)(1 - m\alpha) = 1 - m^2 = (1 - m\alpha)(1 + m\alpha)$. Since $1 - m^2 \neq 0$, the power map $x \mapsto x^{1-m^2}$ is bijective and so the maps $1 - m\alpha$ and $1 + m\alpha$ are also bijective. This proves (c).

Observe that by statement (c) of the lemma, if $m \neq \pm 1$ then $|C_G(a)| = |C_G(u_a u_a^{m\alpha})| = |C_G(u_a)|$ and so in this case, we may assume that $a = u_a$ (i.e. m = 0 and $\emptyset \neq supp(a) \subseteq V\Gamma$). Thus, Case 2 splits into two subcases.

Case 2a: m = 0

In this case, if $1 \leq i, j \leq v$ then, because $a_{i^{\alpha}} = 0 = a_{j^{\alpha}}$ and $\{x_i, x_{j^{\alpha}}\} \notin E\Gamma \cup E\Gamma^{\alpha}$, (3.2) yields that $a_i z_{j^{\alpha}} = a_j z_{i^{\alpha}}$. Moreover, if $\{x_i, x_j\} \notin E\Gamma$ then $a_i z_j = a_j z_i$.

Let $x_i \in supp(a)$. Then if $s = z_{i^{\alpha}}/a_i \in GF(p)$, $z_{j^{\alpha}} = sa_j$ for all $j, 1 \leq j \leq v$, whence, $v_z = \prod_{i=1}^{v} x_{i^{\alpha}}^{sa_i} \equiv (u_a^{\alpha})^s \equiv (a^{\alpha})^s \mod G'$. Next we consider the possibilities for u_z .

Suppose first that $|supp(a)| \geq 2$ and let $V_a = \langle \bigcap_{x_j \in supp(a)} N_{\Gamma}[x_j] \rangle$ (so $V_a \subseteq C_G(a)$). Because $|supp(a)| \geq 2$, the non-existence of quadrilaterals in Γ implies that $|V_a| \leq p$. We claim now that there is a constant r such that for every $x_k \in supp(z)$, either $z_k = ra_k$ or $x_k \in V_a$. It will follow then that $u_z \in a^r V_a$.

Note that if $x_k \in supp(z) \setminus supp(a)$ (so $a_k = 0$) then $x_k \in V_a$, for otherwise $\{x_j, x_k\} \notin E\Gamma$ for some $x_j \in supp(a)$ and so $a_j z_k = a_k z_j = 0$, contradicting $a_j \neq 0 \neq z_k$. Thus, it suffices to prove the claim for $x_k \in supp(z) \cap supp(a)$.

Let Δ be the graph complement in Γ of the subgraph spanned by supp(a) (so $V\Delta = supp(a)$ and if $x_i, x_j \in V\Delta$, $\{x_i, x_j\} \in E\Delta$ if and only if $\{x_i, x_j\} \notin E\Gamma$).

If $\{x_i, x_j\} \in E\Delta$, then $\{x_i, x_j\} \notin E\Gamma$ and so $a_i z_j = a_j z_i$, whence, $z_i/a_i = z_j/a_j$. If Δ is connected, then for some $r \in GF(p)$, $z_k = ra_k$ for all $x_k \in supp(a)$ and the claim is proved. Suppose that Δ is not connected. Because Γ contains no triangles, Δ has two connected components. Moreover, because Γ contains no quadrilaterals, one component consists of a single vertex, say x_i . Because $supp(a) \setminus \{x_i\}$ is contained in a connected component of Δ , there is an $r \in GF(p)$ such that for any $x_k \in supp(a) \setminus \{x_i\}, z_k = ra_k$. Also $\{x_i, x_j\} \in E\Gamma$ for any $x_j \in supp(a) \setminus \{x_i\}$ (since $\{x_i, x_j\} \notin E\Delta$) and so $x_i \in V_a$. This proves the claim.

Therefore, if $|supp(a)| \geq 2$ then $u_z \in a^r V_a$ and so $z \equiv u_z v_z \equiv a^r (a^{\alpha})^s$ mod $V_a G'$. Hence, $C_G(a) \leq \langle a, a^{\alpha}, V_a \rangle G'$ and $|C_G(a) : G'| \leq p^3$.

Next, suppose that |supp(a)| = 1 so $supp(a) = \{x_i\}$ for some $i, 1 \le i \le n$. For purposes of computing $|C_G(a): G'|$, we may assume that $a_i = 1$ and so $\bar{a} = \bar{x_i}$. In this case, if $1 \le j \le v$ with $j \ne i$, $\{x_i, x_{j^\alpha}\} \notin E\hat{\Gamma}$ and so $z_{j^\alpha} = a_i z_{j^\alpha} = a_j z_{i^\alpha} = 0$.

Therefore, $supp(z) \cap V\Gamma^{\alpha} \subseteq \{x_{i^{\alpha}}\} \subseteq N_{\hat{\Gamma}}[x_i]$. Moreover, if $x_j \notin N_{\hat{\Gamma}}[x_i]$ (so $\{x_i, x_j\} \notin E\Gamma$) then because $a_j = 0$, $z_j = a_i z_j = a_j z_i = 0$. Hence, $supp(z) \cap V\Gamma \subseteq N_{\hat{\Gamma}}[x_i]$. Therefore, $supp(z) \subseteq N_{\hat{\Gamma}}[x_i]$ and so $C_G(a) = C_G(x_i) = \langle N_{\hat{\Gamma}}[x_i] \rangle G'$. In particular, if x_i has valence δ_i in Γ (so $|N_{\hat{\Gamma}}[x_i]| = \delta_i + 2$), then $|C_G(x_i) : G'| = p^{\delta_i + 2}$.

Case 2b: $m = \pm 1$

This is the case precisely when $\bar{a} \in [\bar{G}, \alpha] \cup C_{\bar{G}}(\alpha)$ or equivalently, when $\langle \bar{a} \rangle$ is α -invariant. Let $G_m = \langle x_i x_i^{m\alpha} : 1 \leq i \leq v \rangle G'$ where $m = \pm 1$. Then $G_{-1}/G' = [\bar{G}, \alpha]$ and $G_1/G' = C_{\bar{G}}(\alpha)$ and so (since p > 2), $G = G_{-1}G_1$ and $G_{-1} \cap G_1 = G'$. Also, the map $x \mapsto x x^{m\alpha}$ induces an isomorphism from $H_{\Gamma}G'/G'$ to G_m/G' and so $|G_{-1}:G'| = |G_1:G'| = |H_{\Gamma}G'/G'| = p^v$.

Since $m^2 = 1$, Lemma 3.3 (b) implies that $[G_{-1}, G_1] = 1$ and so, since $\bar{a} \in \bar{G}_m$, $G_{-m} \leq C_G(a)$. Therefore, $C_G(a) = G_{-m}G_m \cap C_G(a) = G_{-m}(G_m \cap C_G(a))$.

If $g \in G_m$, $g^{\alpha} \equiv g^m \mod G'$, whence, $g \equiv g^{m\alpha} \mod G'$ and so $[a,g] = [u_a,g]$ $[u_a^{m\alpha}, g^{m\alpha}] = [u_a, g]^2$. Since p > 2, it follows that $G_m \cap C_G(a) = G_m \cap C_G(u_a)$ and so $C_G(a) = G_{-m}(G_m \cap C_G(u_a))$. We claim now that $G_m \cap C_G(u_a) = G' \langle a \rangle$.

By Case 2a, if $|supp(u_a)| \geq 2$ then $C_G(u_a) = \langle u_a, u_a^{\alpha}, V_a \rangle G' = \langle a, u_a, V_a \rangle G' = \langle u_a, V_a \rangle G' \langle a \rangle \leq H_{\Gamma}G' \langle a \rangle$ whereas, if $supp(u_a) = \{x_i\} \subseteq V\Gamma$, then $C_G(u_a) = C_G(x_i) = \langle N_{\hat{\Gamma}}[x_i] \rangle G' = \langle x_i x_i^{m\alpha}, N_{\Gamma}[x_i] \rangle G' = \langle N_{\Gamma}[x_i] \rangle G' \langle a \rangle \leq H_{\Gamma}G' \langle a \rangle$. In either case, since $G_m \cap H_{\Gamma} = 1$, $G_m \cap C_G(u_a) \leq G_m \cap H_{\Gamma}G' \langle a \rangle = G' \langle a \rangle \leq G_m \cap C_G(u_a)$, as claimed.

It follows that $C_G(a) = G_{-m}G'\langle a \rangle$ so $|C_G(a) : G'| = p|G_{-m} : G'| = p^{v+1}$. This completes the proof of statements (a) and (b) of the proposition.

Finally, statement (c) of the proposition follows easily from the hypotheses that $\delta_i \geq 2$ for all $i, 1 \leq i \leq v$, and that Γ has girth at least 5.

For our purposes, it is unfortunate that (by Lemma 3.3 (c)) the order of its centralizer is not sufficient to distinguish a canonical generator $x_i \in V\hat{\Gamma}$ of G from an element of the form $x_i x_i^{m\alpha}$, $m \neq \pm 1$. However, by a more judicious choice of the elements ω_i introduced in the presentation of $G_{\hat{\Gamma}}$, we can at least ensure that these two types of elements have non-isomorphic centralizers.

Corollary 3.4. Assume the hypotheses of Proposition 3.2. Assume additionally that for each $k, 1 \leq k \leq v$, the element $\omega_k \in F(V\hat{\Gamma})$ in the presentation (3.1) is a commutator $[x_r, x_s]$, where x_r and x_s are distinct elements of $N_{\Gamma}[x_k] \setminus \{x_k\}$, and that $\omega_{k^{\alpha}} = \omega_k^{\alpha}$. If $a \in G$ such that $C_G(a) \cong C_G(x_j)$ for some $x_j \in V\hat{\Gamma}$ then there exists a unique $x_i \in V\hat{\Gamma}$ such that $\langle aG' \rangle = \langle x_iG' \rangle$.

Proof. The uniqueness statement is clear. So assume that $C_G(a) \cong C_G(x_j)$ for some $x_j \in V\hat{\Gamma}$. It follows from Proposition 3.2 that $\langle aG' \rangle = \langle x_i^l x_i^{m\alpha}G' \rangle$ for some $x_i \in V\hat{\Gamma}$ and $l, m \in GF(p), l \neq \pm m$. If $l = 0, \langle aG' \rangle = \langle x_i^{\alpha}G' \rangle$ and we are done. If $l \neq 0$, we may assume that l = 1 (so $m \neq \pm 1$) and it remains to prove that m = 0. M. R. Pettet

Arch. Math.

FIGURE 1. The graph Γ_n

Let $C_j = C_G(x_j)$ and $D_i = C_G(x_i x_i^{m\alpha})$ so $C_j \cong C_G(a) \cong D_i$. Regarding ω_j as an element of G, $1 \neq \omega_j = x_j^p \in C'_j \cap C_j^p$ and so $D'_i \cap D_i^p \neq 1$.

By Lemma 3.3(c), the map $C_i \to D_i$, $x \mapsto x^{-1}x^{m\alpha}$ is bijective and so it induces an isomorphism $C_i/G' \to D_i/G'$. Hence, $D_i = \langle x_l^{-1}x_l^{m\alpha} : x_l \in N_{\hat{\Gamma}}[x_i] \rangle G'$. It follows that $D'_i = \langle u_{r,s} : x_r, x_s \in N_{\hat{\Gamma}}[x_i] \rangle$ where $u_{r,s} = [x_r^{-1}x_r^{m\alpha}, x_s^{-1}x_s^{m\alpha}] = [x_r, x_s]^{1+m^2}[x_r, x_s^{\alpha}]^{-2m}$. Since $D'_i \cap D^p_i \neq 1$, some non-trivial product $\prod_{r,s} u^{n_{r,s}}_{t,s}$ lies in D^p_i . But then $\prod_{r,s} [x_r, x_s^{\alpha}]^{-2m})^{n_{r,s}} \in \langle B_{\Gamma} \rangle$, whence, because $B_{\Gamma} \cup B_0$ is linearly independent over GF(p), each $mn_{r,s} = 0$ and so m = 0.

4. Proof of Theorem 1.1. We consider the nested family of graphs Γ_n , $n \geq 1$, indicated in Figure 1. (The first of these, Γ_1 , was used in the proof of [3, Theorem III.6].) Each Γ_n has girth 5 and all vertices have valence 2, 3 or 4. In addition, each Γ_n has trivial automorphism group. (As the unique vertex of valence 4, x_6 is fixed by every element of $\operatorname{Aut}(\Gamma_n)$, from which it is easily seen that $\operatorname{Aut}(\Gamma_1) = 1$. As the subgraph spanned by the vertices of Γ_n that lie at most two edges away from x_6 , Γ_1 is invariant under (and hence, fixed by) $\operatorname{Aut}(\Gamma_n)$ and the triviality of $\operatorname{Aut}(\Gamma_n)$ follows by induction on n.) Note that $|V\Gamma_n| = 4n + 6$.

Fix an odd prime p and an integer $n \ge 1$ and let $\Gamma = \Gamma_n$. Let $\hat{\Gamma}$ and α be, respectively, the corresponding prismoidal extension of Γ and the prismoidal

automorphism, as defined in Section 2. We begin by defining explicitly the elements ω_i in the presentation (3.1) of the corresponding group $G_{\hat{\Gamma}}$, making use of a decomposition of Γ into oriented paths and cycles.

Observe that Γ may be expressed as $\bigcup_{i=1}^{k+2} \Lambda_i$ where Λ_1 is the oriented cycle $(x_6, x_3, x_2, x_7, x_8)$ of length 5, Λ_2 is the oriented cycle $(x_6, x_9, x_{10}, x_5, x_4)$ of length 5, Λ_3 is the oriented path (x_3, x_1, x_5) of length 2 and for $i \geq 4$, Λ_i is the oriented path $(x_{4i-9}, x_{4i-5}, x_{4i-4}, x_{4i-3}, x_{4i-2}, x_{4i-6})$ of length 5.

If $x \in V\Gamma$, let *m* be minimal such that $x \in V\Lambda_m$. Then *x* is not one of the ends of Λ_m (since, if Λ_m is not a cycle, its end vertices lie in Λ_{m-1}) and so we may define x^{σ} and x^{τ} to be, respectively, the vertices immediately preceding and succeeding *x* in Λ_m . (So, for example, $x_1^{\sigma} = x_3$, $x_1^{\tau} = x_5$, $x_2^{\sigma} = x_3$, $x_2^{\tau} = x_7$ etc.) The functions σ and τ extend to $\hat{\Gamma}$ via $(x^{\alpha})^{\sigma} = (x^{\sigma})^{\alpha}$ and $(x^{\alpha})^{\tau} = (x^{\tau})^{\alpha}$. For each $x_i \in V\hat{\Gamma}$, we now define $\omega_i = [x_i^{\sigma}, x_i^{\tau}]$ (whence, $\omega_{i^{\alpha}} = \omega_i^{\alpha}$). (Of course, this explicit definition of the ω_i 's is consistent with the hypotheses of Corollary 3.4.)

Finally, we construct the groups postulated by Theorem 1.1.

Let p be an odd prime and let r be a positive integer. Let c be an integer such that c > 5r+4 and $c \equiv 1 \mod 4$. For $1 \leq k \leq r$, let $v_k = c^k + 1$ (so $v_k \equiv 2 \mod 4$) and let $n_k = (v_k - 6)/4 \in \mathbb{Z}$. (Thus, $|V\Gamma_{n_k}| = 4n_k + 6 = v_k$.) Let $G_k = G_{\hat{\Gamma}_{n_k}}$ be the corresponding p-group (as defined by (3.1) with the ω_i 's as specified above) and let $G = G_1 \times G_2 \times \ldots \times G_r$.

Lemma 4.1. For each $k, 1 \le k \le r, G'G_k$ is a characteristic subgroup of G.

Proof. Let $1 \leq k \leq r$ and let $x \in V\Gamma_{n_k}$. By Proposition 3.2, $|C_{G_k}(x) : G'_k| = p^{\delta_x + 2}$ and so $|x^G| = |G_k : G'_k|/|C_{G_k}(x) : G'_k| = p^{2v_k - \delta_x - 2} = p^{2c^k - \delta_x}$, where δ_x is the valence of x in Γ_{n_k} (so $2 \leq \delta_x \leq 4$). Because $G_k = \langle V \hat{\Gamma}_{n_k} \rangle$, it suffices to show that the elements of G with precisely $p^{2c^k - \delta_x}$ conjugates all lie in $G'G_k$.

Suppose that $y = (y_1, \ldots, y_r) \in G$ (with each $y_i \in G_i$) such that $|x^G| = |y^G|$. Proposition 3.2 implies that $|y_j^G| = |y_j^{G_j}| = |G_j : G'_j|/|C_{G_j}(y_j) : G'_j| = p^{\eta_j v_j - \epsilon_j}$, where either $1 \leq \eta_j \leq 2$ and $1 \leq \epsilon_j \leq 6$ or (if $y_j \in G'_j$) $\eta_j = \epsilon_j = 0$. Since $|y^G| = |y_1^G| \ldots |y_r^G|$, $\log_p |y^G| = \sum_{j=1}^r (\eta_j v_j - \epsilon_j) = \sum_{j=1}^r \eta_j c^j + \sum_{j=1}^r (\eta_j - \epsilon_j)$. Equating this with $\log_p |x^G|$ yields that $\delta_x + \sum_{j=1}^r (\eta_j - \epsilon_j) = 2c^k - \sum_{j=1}^r \eta_j c^j$ and so c divides $\delta_x + \sum_{j=1}^r (\eta_j - \epsilon_j)$. However, $|\delta_x + \sum_{j=1}^r (\eta_j - \epsilon_j)| \leq |\delta_x| + \sum_{j=1}^r |\eta_j - \epsilon_j| \leq 4 + 5r < c$ and so $2c^k - \sum_{j=1}^r \eta_j c^j = 0$. Since $0 \leq \eta_j \leq 2 < c$ for all j, it follows that $\eta_k = 2$ and $\eta_j = 0$ for all $j \neq k$. Therefore, $y_j \in G'$ for all $j \neq k$ and so $y \in G'G_k$.

For $1 \leq k \leq r$, let α_k denote the prismoidal automorphism of $\hat{\Gamma}_{n_k}$ and also the corresponding involutary automorphisms of G_k and of G. By Proposition 1, $\operatorname{Aut}(\hat{\Gamma}_{n_k}) = \langle \alpha_k \rangle$. Let $E = \langle \alpha_1, \alpha_2, \ldots, \alpha_r \rangle \leq \operatorname{Aut}(G)$, so E is an elementary abelian 2-subgroup of rank r. We shall prove that G is an A-group, that $A_{\mathcal{C}}(G) =$ $\operatorname{Aut}_{\mathcal{C}}(G)$ and that $\operatorname{Aut}(G)$ is a semidirect product of E with $A_{\mathcal{C}}(G)$. M. R. Pettet

Suppose that $\beta \in \operatorname{Aut}(G)$ and let $1 \leq k \leq r$. By Lemma 4.1, if $a \in G_k$, $a^\beta \in bG'$ for some $b \in G_k$. If $H_k = \prod_{j \neq k} G'_j$, then $G' = H_k \times G'_k$ and so $H_k \times C_{G_k}(a) = C_{G'G_k}(a) \cong C_{G'G_k}(a^\beta) = C_{G'G_k}(b) = H_k \times C_{G_k}(b)$. Therefore, $C_{G_k}(a) \cong C_{G_k}(b)$.

It follows from Corollary 3.4 that there is a permutation θ_k of $V\hat{\Gamma}_{n_k}$ such that for any $x \in V\hat{\Gamma}_{n_k}$, $\langle x^{\beta}G'_k \rangle = \langle x^{\theta_k}G'_k \rangle$ and so, for each such x there is a $c_x \in GF(p) \setminus \{0\}$ such that $x^{\beta} \equiv (x^{\theta_k})^{c_x} \mod G'_k$. In fact, $\theta_k \in \operatorname{Aut}(\hat{\Gamma}_{n_k}) = \langle \alpha_k \rangle \leq E$ because if $\{x, y\} \in E\hat{\Gamma}_k$, then [x, y] = 1 and so $[x^{\theta_k}, y^{\theta_k}]^{c_x c_y} = [x, y]^{\beta} = 1$, whence $[x^{\theta_k}, y^{\theta_k}] = 1$ and $\{x^{\theta_k}, y^{\theta_k}\} \in E\hat{\Gamma}_{n_k}$.

If $x \in V\Gamma_{n_k}$ then $G_k^p \leq G_k' \leq C_{G_k}(E)$ and so $(x^p)^{\beta} = (x^p)^{\theta_k c_x} = (x^p)^{c_x} = [x^{\sigma}, x^{\tau}]^{c_x}$. But also, $(x^p)^{\beta} = [x^{\sigma}, x^{\tau}]^{\beta} = [(x^{\sigma})^{\beta}, (x^{\tau})^{\beta}] = [(x^{\sigma})^{\theta_k c_x \sigma}, (x^{\tau})^{\theta_k c_x \tau}] = [x^{\sigma}, x^{\tau}]^{c_x \sigma c_x \tau}$. Therefore, $c_x = c_{x^{\sigma}} c_{x^{\tau}}$ for all $x \in V\Gamma_{n_k}$

We claim that $c_x = 1$ for all $x \in V\hat{\Gamma}_{n_k}$. This is a consequence of the following general observation: Assume that in a graph, Λ is an oriented path of length l with vertices (in sequence) $v_0, v_1, v_2, \ldots, v_l$. Suppose that K is a field and f is a function from $V\Lambda$ to $K \setminus \{0\}$ such that if $f_i = f(v_i)$, then $f_i = f_{i-1}f_{i+1}$ for $1 \leq i \leq l-1$ (and also, $f_0 = f_l = f_{l-1}f_1$ if Λ is a cycle with $v_0 = v_l$). Then for any non-negative integer j, $f_{6j} = f_0$, $f_{6j+1} = f_1$, $f_{6j+2} = f_1f_0^{-1}$, $f_{6j+3} = f_0^{-1}$, $f_{6j+4} = f_1^{-1}$ and $f_{6j+5} = f_0f_1^{-1}$. If Λ is a cycle with $l \equiv \pm 1 \mod 6$, it follows that $f_i = 1$ for all i. Also, if Λ is a path (cycle or not) with $l \equiv \pm 1 \mod 3$ and such that $f_0 = 1 = f_l$ then, again, $f_i = 1$ for all i.

Because $c_x = c_{x^{\sigma}} c_{x^{\tau}}$ for all $x \in V\Gamma_{n_k}$, applying these considerations successively to the paths $\Lambda_1, \Lambda_2, \ldots, \Lambda_{n_k+2}$ in the decomposition $\Gamma_{n_k} = \bigcup_{i=1}^{n_k+2} \Lambda_i$ described earlier, we conclude that $c_x = 1$ for all $x \in V\Gamma_{n_k}$. Similarly, $c_x = 1$ for all $x \in V\Gamma_{n_k}$.

Therefore, for any $x \in V\hat{\Gamma}_{n_k}$ (and hence, for any $x \in G_k$), $x^{\beta} \equiv x^{\theta_k} \mod G'_k$. It follows that if $\theta = (\theta_1, \ldots, \theta_r) \in E$ then $g^{\beta} \equiv g^{\theta} \mod G'$ for all $g \in G$ and so $\beta \in C_{\operatorname{Aut}(G)}(G/G')E \leq \operatorname{Aut}_c(G)E$. Also, because $[x, x^{\alpha_k}] = 1$ for all $x \in G_k$, $[x, x^{\theta_k}] = 1$ for all $x \in G_k$ and so $[g, g^{\beta}] = 1$ for all $g \in G$. Therefore, G is an A-group and $\operatorname{Aut}(G) = C_{\operatorname{Aut}(G)}(G/G')E = \operatorname{Aut}_c(G)E$.

If $\gamma \in E$ and $\gamma \neq 1$, then γ maps some Γ_{n_k} to $\Gamma_{n_k}^{\alpha_k}$. If $\{x, y\} \in E\Gamma_{n_k}$ then since $\{x^{\alpha_k}, y\} \notin E\hat{\Gamma}_{n_k}, y \in C_{G_k}(x) \setminus C_{G_k}(x^{\alpha_k})$. We conclude that $\gamma \notin A_{\mathcal{C}}(G)$ and so $E \cap A_{\mathcal{C}}(G) = 1$, whence, $A_{\mathcal{C}}(G) = \operatorname{Aut}_c(G)$. Therefore, $\operatorname{Aut}(G)/A_{\mathcal{C}}(G) \cong E \cong (\mathbb{Z}_2)^r$. Since r was chosen arbitrarily, the proof of Theorem 1.1 is complete. \Box

References

- M. DEACONESCU, G. SILBERBERG, AND G. L. WALLS, On commuting automorphisms of groups, Arch. Math. 79, 423–429 (2002).
- [2] H. HEINEKEN AND H. LIEBECK, The occurrence of finite groups in the automorphism groups of nilpotent groups of class 2, Arch. Math. 25 (1974), 8–16.

- [3] C. J. MAXSON AND M. R. PETTET, Maximal subrings and E-groups, Arch. Math. 88, 392–402 (2007).
- [4] D. J. S. ROBINSON, A Course in the Theory of Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

MARTIN R. PETTET, Department of Mathematics, The University of Toledo, Toledo, Ohio 43606, U.S.A. e-mail: mpettet@math.utoledo.edu

Received: 23 March 2008

Revised: 20 May 2008